Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 34(2): 2929-2943, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908045

RESUMEN

Diet plays a significant role in the pathogenesis of inflammatory bowel disease (IBD). A recent epidemiological study has shown an inverse relationship between nutritional manganese (Mn) status and IBD patients. Mn is an essential micronutrient required for normal cell function and physiological processes. To date, the roles of Mn in intestinal homeostasis remain unknown and the contribution of Mn to IBD has yet to be explored. Here, we provide evidence that Mn is critical for the maintenance of the intestinal barrier and that Mn deficiency exacerbates dextran sulfate sodium (DSS)-induced colitis in mice. Specifically, when treated with DSS, Mn-deficient mice showed increased morbidity, weight loss, and colon injury, with a concomitant increase in inflammatory cytokine levels and oxidative and DNA damage. Even without DSS treatment, dietary Mn deficiency alone increased intestinal permeability by impairing intestinal tight junctions. In contrast, mice fed a Mn-supplemented diet showed slightly increased tolerance to DSS-induced experimental colitis, as judged by the colon length. Despite the well-appreciated roles of intestinal microbiota in driving inflammation in IBD, the gut microbiome composition was not altered by changes in dietary Mn. We conclude that Mn is necessary for proper maintenance of the intestinal barrier and provides protection against DSS-induced colon injury.


Asunto(s)
Colitis , Colon , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Manganeso/farmacología , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/microbiología , Colitis/patología , Colon/metabolismo , Colon/microbiología , Colon/patología , Daño del ADN , Sulfato de Dextran/toxicidad , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/microbiología , Inflamación/patología , Ratones , Oxidación-Reducción/efectos de los fármacos
2.
Epigenomics ; 8(12): 1689-1708, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27855486

RESUMEN

Dysregulation of histone methylation has emerged as a major driver of neurodevelopmental disorders including intellectual disabilities and autism spectrum disorders. Histone methyl writer and eraser enzymes generally act within multisubunit complexes rather than in isolation. However, it remains largely elusive how such complexes cooperate to achieve the precise spatiotemporal gene expression in the developing brain. Histone H3K4 methylation (H3K4me) is a chromatin signature associated with active gene-regulatory elements. We review a body of literature that supports a model in which the RAI1-containing H3K4me writer complex counterbalances the LSD1-containing H3K4me eraser complex to ensure normal brain development. This model predicts H3K4me as the nexus of previously unrelated neurodevelopmental disorders.


Asunto(s)
Encéfalo/metabolismo , Histonas/metabolismo , Anomalías Múltiples/genética , Animales , Trastornos de los Cromosomas/genética , Duplicación Cromosómica/genética , Ritmo Circadiano/genética , Proteínas Co-Represoras/genética , Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metilación , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas del Tejido Nervioso/genética , Síndrome de Smith-Magenis/genética , Transactivadores , Factores de Transcripción/genética
3.
Cell ; 128(6): 1077-88, 2007 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-17320160

RESUMEN

Histone methylation regulates chromatin structure and transcription. The recently identified histone demethylase lysine-specific demethylase 1 (LSD1) is chemically restricted to demethylation of only mono- and di- but not trimethylated histone H3 lysine 4 (H3K4me3). We show that the X-linked mental retardation (XLMR) gene SMCX (JARID1C), which encodes a JmjC-domain protein, reversed H3K4me3 to di- and mono- but not unmethylated products. Other SMCX family members, including SMCY, RBP2, and PLU-1, also demethylated H3K4me3. SMCX bound H3K9me3 via its N-terminal PHD (plant homeodomain) finger, which may help coordinate H3K4 demethylation and H3K9 methylation in transcriptional repression. Significantly, several XLMR-patient point mutations reduced SMCX demethylase activity and binding to H3K9me3 peptides, respectively. Importantly, studies in zebrafish and primary mammalian neurons demonstrated a role for SMCX in neuronal survival and dendritic development and a link to the demethylase activity. Our findings thus identify a family of H3K4me3 demethylases and uncover a critical link between histone modifications and XLMR.


Asunto(s)
Histonas/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Oxidorreductasas N-Desmetilantes/genética , Proteínas/genética , Animales , Línea Celular Tumoral , Supervivencia Celular , ADN Complementario , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Biblioteca de Genes , Histona Demetilasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Histona Demetilasas con Dominio de Jumonji , Lisina/metabolismo , Metilación , Ratones , Antígenos de Histocompatibilidad Menor , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neuronas/citología , Neuronas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Proteínas/metabolismo , Proteína 2 de Unión a Retinoblastoma , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA