Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neuroimmune Pharmacol ; 18(3): 509-528, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37682502

RESUMEN

The autophagy-lysosomal pathway (ALP) is a major cellular machinery involved in the clearance of aggregated proteins in Alzheimer disease (AD). However, ALP is dramatically impaired during AD pathogenesis via accumulation of toxic amyloid beta (Aß) and phosphorylated-Tau (phospho-Tau) proteins in the brain. Therefore, activation of ALP may prevent the increased production of Aß and phospho-Tau in AD. Peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that can activate autophagy, and transcriptionally regulate transcription factor EB (TFEB) which is a key regulator of ALP. This suggests that targeting PPARα, to reduce ALP impairment, could be a viable strategy for AD therapy. In this study, we investigated the anti-AD activity of Caudatin, an active constituent of Cynanchum otophyllum (a traditional Chinese medicinal herb, Qing Yang Shen; QYS). We found that Caudatin can bind to PPARα as a ligand and augment the expression of ALP in microglial cells and in the brain of 3XTg-AD mice model. Moreover, Caudatin could activate PPARα and transcriptionally regulates TFEB-augmented lysosomal degradation of Aß and phosphor-Tau aggregates in AD cell models. Oral administration of Caudatin decreased AD pathogenesis and ameliorated the cognitive dysfunction in 3XTg-AD mouse model. Conclusively, Caudatin can be a potential AD therapeutic agent via activation of PPARα-dependent ALP.

3.
Phytomedicine ; 96: 153887, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34936968

RESUMEN

BACKGROUND: Collective evidences have indicated that intracellular accumulation of hyperphosphorylated tau forms neurofibrillary tangles in the brain, which impairs memory, cognition and affects social activities in Alzheimer's disease (AD). PURPOSE: To investigate the tau-reducing, and memory-enhancing properties of protopine (PRO), a natural alkaloid isolated from Chinese herbal medicine Corydalis yanhusuo (Yanhusuo in Chinese). STUDY DESIGN: By using Histone deacetylase 6 (HDAC6) profiling and immunoprecipitation assays, we assessed that PRO mediated the heat shock protein 90 (HSP90) chaperonic activities for the degradation of pathological tau in AD cell culture models. To study the efficacy of PRO in vivo, we employed 3xTg-AD and P301S tau mice models. METHODS: Liquid chromatography/quadrupole time-of-flight mass spectrometry was used to analyze the pharmacokinetic profile of PRO. Seven-month-old 3xTg-AD mice and 1.5-month-old P301S mice were administered PRO (1 and 2.5 mg/kg) orally every day. Morris water maze, contextual fear conditioning and rotarod assays were applied for studying memory functions. Sarkosyl differential centrifugation was used to analyze soluble and insoluble tau. Immunohistochemical analysis were performed to determine tau deposits in AD mice's brain sections. Molecular docking, binding affinity studies and primary cell culture studies were performed to demonstrate the mechanism of action of PRO in silico and in vitro. RESULTS: Our pharmacokinetic profiling demonstrated that PRO significantly entered the brain at a concentration of 289.47 ng/g, and specifically attenuated tau pathology, improved learning and memory functions in both 3xTg-AD and P301S mice. Docking, binding affinity studies, and fluorometric assays demonstrated that PRO directly bound to the catalytic domain 1 (CD1) of HDAC6 and down-regulated its activity. In primary cortical neurons, PRO enhanced acetylation of α-tubulin, indicating HDAC6 inhibition. Meanwhile, PRO promoted the ubiquitination of tau and recruited heat shock protein 70 (HSP70) and heat shock cognate complex 71 (HSC70) for the degradation of pathological tau via the ubiquitin-proteasomal system (UPS). CONCLUSION: We identified PRO as a natural HDAC6 inhibitor that attenuated tau pathology and improved memory dysfunctions in AD mice. The findings from this study provides a strong justification for future clinical development of plant-derived protopine as a novel agent for the treatment of tau-related neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Histona Desacetilasa 6 , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Benzofenantridinas , Alcaloides de Berberina , Modelos Animales de Enfermedad , Histona Desacetilasa 6/antagonistas & inhibidores , Ratones , Ratones Transgénicos , Simulación del Acoplamiento Molecular , Proteínas tau
4.
Curr Mol Pharmacol ; 15(2): 361-379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34488602

RESUMEN

Alzheimer's disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-ß (Aß) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegenerative diseases called tauopathies, including Pick's disease, frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration. The recent unsuccessful phase III clinical trials related to Aß- targeted therapeutic drugs have indicated that alternative targets, such as Tau, should be studied to discover more effective and safer drugs. Recent drug discovery approaches to reduce AD-related Tau pathologies are primarily based on blocking Tau aggregation, inhibiting Tau phosphorylation, compensating impaired Tau function with MT-stabilizing agents, and targeting the degradation pathways in neuronal cells to degrade Tau protein aggregates. Owing to several limitations of the currently available Tau-directed drugs, further studies are required to generate further effective and safer Tau-based disease-modifying drugs. Here, we review the studies focused on medicinal plant- derived compounds capable of modulating the Tau protein, which is significantly elevated and hyperphosphorylated in AD and other tauopathies. We have mainly considered the studies focused on Tau protein as a therapeutic target. We have reviewed several pertinent papers retrieved from PubMed and ScienceDirect using relevant keywords, with a primary focus on the Tau-targeting compounds from medicinal plants. These compounds include indolines, phenolics, flavonoids, coumarins, alkaloids, and iridoids, which have been scientifically proven to be Tau-targeting candidates for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Plantas Medicinales , Tauopatías , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Humanos , Fitoquímicos/uso terapéutico , Plantas Medicinales/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo , Proteínas tau/uso terapéutico
5.
Phytomedicine ; 91: 153648, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34332287

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid ß plaques (Aß) and neurofibrillary tangles (NFTs) is the key pathological hallmark of AD. Accumulating evidence suggest that impairment of autophagy-lysosomal pathway (ALP) plays key roles in AD pathology. PURPOSE: The present study aims to assess the neuroprotective effects of Qingyangshen (QYS), a Chinese herbal medicine, in AD cellular and animal models and to determine its underlying mechanisms involving ALP regulation. METHODS: QYS extract was prepared and its chemical components were characterized by LC/MS. Then the pharmacokinetics and acute toxicity of QYS extract were evaluated. The neuroprotective effects of QYS extract were determined in 3XTg AD mice, by using a series of behavioral tests and biochemical assays, and the mechanisms were examined in vitro. RESULTS: Oral administration of QYS extract improved learning and spatial memory, reduced carboxy-terminal fragments (CTFs), amyloid precursor protein (APP), Aß and Tau aggregates, and inhibited microgliosis and astrocytosis in the brains of 3XTg mice. Mechanistically, QYS extract increased the expression of PPARα and TFEB, and promoted ALP both in vivo and in vitro. CONCLUSION: QYS attenuates AD pathology, and improves cognitive function in 3XTg mice, which may be mediated by activation of PPARα-TFEB pathway and the subsequent ALP enhancement. Therefore, QYS may be a promising herbal material for further anti-AD drug discovery.


Asunto(s)
Enfermedad de Alzheimer , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Medicamentos Herbarios Chinos/farmacología , PPAR alfa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Proteínas tau
6.
Biomed Pharmacother ; 133: 110968, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33189067

RESUMEN

Neurodegenerative diseases (NDs) are common chronic diseases related to progressive damage of the nervous system. Globally, the number of people with an ND is dramatically increasing consistent with the fast aging of society and one of the common features of NDs is the abnormal aggregation of diverse proteins. Autophagy is the main process by which misfolded proteins and damaged organelles are removed from cells. It has been found that the impairment of autophagy is associated with many NDs, suggesting that autophagy has a vital role in the neurodegeneration process. Recently, more and more studies have reported that autophagy inducers display a protective role in different ND experimental models, suggesting that enhancement of autophagy could be a potential therapy for NDs. In this review, the evidence for beneficial effects of traditional Chinese medicine (TCM) regulate autophagy in the models of Alzheimer's disease (AD), Parkinson's disease (PD), and other NDs are presented and common autophagy-related mechanisms are identified. The results demonstrate that TCM which regulate autophagy are potential therapeutic candidates for ND treatment.


Asunto(s)
Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Degeneración Nerviosa , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/efectos de los fármacos , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología
7.
J Food Drug Anal ; 28(1): 132-146, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31883601

RESUMEN

Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Amyloid-ß (Aß) and hyper-phosphorylated tau accumulation are accountable for the progressive neuronal loss and cognitive impairments usually observed in AD. Currently, medications for AD offer moderate symptomatic relief but fail to cure the disease; hence development of effective and safe drugs is urgently needed for AD treatment. In this study, we investigated a Chinese medicine (CM) formulation named NeuroDefend (ND), for reducing amyloid ß (Aß) and tau pathology in transgenic AD mice models. Regular oral administration of ND improved cognitive function and memory in 3XTg-AD and 5XFAD mice. In addition, ND reduced beta-amyloid precursor protein (APP), APP C-terminal fragments (CTF-ß/α), Aß and 4G8 positive Aß burden in 3XTg-AD and 5XFAD mice. Furthermore, ND efficiently reduced the levels of insoluble phospho-tau protein aggregates and AT8 positive phospho tau neuron load in 3XTg-AD mice. Hence, ND could be a promising candidate for the treatment of AD in humans.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas tau , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Medicina Tradicional China , Ratones , Ratones Transgénicos , Agregación Patológica de Proteínas/tratamiento farmacológico , Proteínas tau/metabolismo
8.
Aging Cell ; 19(2): e13069, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31858697

RESUMEN

Accumulating studies have suggested that targeting transcription factor EB (TFEB), an essential regulator of autophagy-lysosomal pathway (ALP), is promising for the treatment of neurodegenerative disorders, including Alzheimer's disease (AD). However, potent and specific small molecule TFEB activators are not available at present. Previously, we identified a novel TFEB activator named curcumin analog C1 which directly binds to and activates TFEB. In this study, we systematically investigated the efficacy of curcumin analog C1 in three AD animal models that represent beta-amyloid precursor protein (APP) pathology (5xFAD mice), tauopathy (P301S mice) and the APP/Tau combined pathology (3xTg-AD mice). We found that C1 efficiently activated TFEB, enhanced autophagy and lysosomal activity, and reduced APP, APP C-terminal fragments (CTF-ß/α), ß-amyloid peptides and Tau aggregates in these models accompanied by improved synaptic and cognitive function. Knockdown of TFEB and inhibition of lysosomal activity significantly inhibited the effects of C1 on APP and Tau degradation in vitro. In summary, curcumin analog C1 is a potent TFEB activator with promise for the prevention or treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Curcumina/uso terapéutico , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular Tumoral , Emparejamiento Cromosómico/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Curcumina/farmacología , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño
9.
Sci Rep ; 7(1): 6238, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740171

RESUMEN

Alzheimer's disease (AD) is a degenerative disorder typified by progressive deterioration of memory and the appearance of ß-amyloid peptide (Aß)-rich senile plaques. Recently we have identified a novel function of a patented formulation of modified Huanglian-Jie-Tu-Tang (HLJDT-M), a Chinese herbal medicine, in treating AD in in vitro studies (US patent No. 9,375,457). HLJDT-M is a formulation composed of Rhizoma Coptitis, Cortex Phellodendri and Fructus Gardeniae without Radix Scutellariae. Here, we assessed the efficacy of HLJDT-M on a triple transgenic mouse model of AD (3XTg-AD). Oral administration of HLJDT-M ameliorated the cognitive dysfunction of 3XTg-AD mice and lessened the plaque burden. In addition, biochemical assays revealed a significant decrease in levels of detergent-soluble and acid-soluble Aß via decreasing the levels of full length amyloid-ß precursor protein (FL-APP) and C-terminal fragments of APP (CTFs) in brain lysates of HLJDT-M-treated mice. HLJDT-M treatment also significantly reduced the levels of FL-APP and CTFs in N2a/SweAPP cells. In contrast, treatment using the classical formula HLJDT did not reduce the memory impairment of 3XTg-AD mice and, rather, increased the Aß/Fl-APP/CTFs in both animal and cell culture studies. Altogether, our study indicates that HLJDT-M is a promising herbal formulation to prevent and/or cure AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Precursor de Proteína beta-Amiloide/fisiología , Medicamentos Herbarios Chinos/química , Trastornos de la Memoria/tratamiento farmacológico , Extractos Vegetales/farmacocinética , Placa Amiloide/prevención & control , Presenilina-1/fisiología , Proteínas tau/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Ratones , Ratones Transgénicos , Placa Amiloide/etiología , Placa Amiloide/patología
10.
Curr Alzheimer Res ; 14(11): 1229-1237, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28413985

RESUMEN

OBJECTIVE: Generation and accumulation of the amyloid-ß (Aß) peptide after proteolytic processing of the full length amyloid precursor protein (FL-APP) by ß-secretase (ß-site APP cleaving enzyme or BACE1) and γ-secretase are the main causal factors of Alzheimer's disease (AD). Thus, inhibition of BACE1, a rate-limiting enzyme in the production of Aß, is an attractive therapeutic approach for the treatment of AD. Recent studies suggest that salvianolic acid B (Sal B) is isolated from the radix of Salvia miltiorrhiza Bunge, a Chinese herbal medicine commonly used for the treatment of cardiovascular, cerebrovascular and liver diseases in China. METHOD: In this study, we discovered that Sal B acted as a BACE1 modulator and reduced the level of secreted Aß in two different Swedish APP (SwedAPP) mutant cell lines. Using N2a-mouse and H4- human neuroglioma cell lines expressing SwedAPP, it was demonstrated that Sal B significantly and dose-dependently decreased the generation of extracellular Aß, soluble APPß (by-product of APP cleaved by BACE1), and intracellular C-terminal fragment ß from APP without influencing α-secretase and γ-secretase activity and the levels of FL-APP. In addition, using protein-docking, we determined the potential conformation of Sal B on BACE1 docking and revealed the interactions of Sal B with the BACE1 catalytic center. RESULTS: The docking provides a feasible explanation for the experimental results, especially in terms of the molecular basis of Sal B's action. Our results indicate that Sal B is a BACE1 inhibitor and, as such, is a promising candidate for the treatment of AD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Benzofuranos/farmacología , Fármacos Neuroprotectores/farmacología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Benzofuranos/química , Catálisis/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Fármacos Neuroprotectores/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA