RESUMEN
Fruits such as bacaba (Oenocarpus bacaba Mart), pracaxi (Pentaclethra macroloba Kuntze) and uxi (Endopleura uchi (Huber) Cuatrec), from the Amazon rainforest, are potentially interesting for studies of natural products. The current article aims at mapping and characterizing studies on the bacaba, pracaxi and uxi species. This review reports the main bioactive compounds identified in these species and discusses their therapeutic potential. Searches were performed in MEDLINE (Via Pubmed) and Web of Science. Thirty-one studies that described or evaluated the development of formulations aimed at the therapeutic use of the species were included. The findings suggest that species have the potential for the development of pharmaceutical formulations due to their therapeutic properties. However, further studies are required to assess safety and efficacy of these products. Therefore, it is suggested that new research studies propose strategies so that technological development is based on awareness and preservation of the biome.
Asunto(s)
Arecaceae , Fabaceae , Frutas , Cromatografía Líquida de Alta Presión , AceitesRESUMEN
Photodynamic therapy (PDT) combines light with photosensitizers (PS) for production of reactive oxygen species (ROS) that can kill infectious microorganisms such as bacteria, fungi and protozoa. The application of nanotechnology has enabled the advancement of PDT because many PS are insoluble in water, necessitating a nanocarrier as a physiologically acceptable carrier. Nanoemulsions are efficient nanocarriers for solubilizing liposoluble drugs, like the PS, in water. Cutaneous (CL) and mucocutaneous leishmaniasis (ML) are caused by different species of the genus Leishmania, transmitted to humans by sandfly bites. Parasites are hosted in skin macrophages producing ulcerative lesions. Thus, a topical treatment, effective and inexpensive, for CL and ML is preferable to systemic interventions. There are topical treatments like paromomycin and amphotericin B, but they have many local side effects or a very high cost, limiting their use. This work aimed to develop a zinc phthalocyanine (photosensitizer) oil-in-water nanoemulsion, essential clove oil and polymeric surfactant (Pluronic® F127) for the formulation of a topical delivery system for use in PDT against Leishmania amazonensis and Leishmania infantum. The nanoemulsion was produced by a high-energy method and characterized by size, polydispersity, morphology, pH, content and stability studies. The toxicity in the dark and the photobiological activity of the formulations were evaluated in vitro for Leishmania and macrophages. The formulation presented was pH compatible with topical use, approximately 30 nm in size, with a polydispersity index ≤0.1 and remained stable at room and refrigerator temperature during the stability study (60 days). The zinc phthalocyanine nanoemulsion is effective in PDT against Leishmania spp.; use against skin infections can be a future application of this topical formulation, avoiding the use of oral or injectable medications, decreasing systemic adverse effects.