Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Pharmacol Toxicol Methods ; 100: 106602, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31238094

RESUMEN

Regulatory guidelines recommend specialised safety pharmacology assessments in animals to characterise drug-induced effects on the central nervous system (CNS) prior to first-in-human trials, including the functional observational battery or Irwin test (here collectively termed neurofunctional assessments). These assessments effectively detect overtly neurotoxic drugs; however, the suitability of the in vivo assessments to readily detect more subtle drug effects on the nervous system has been questioned. A survey was formulated by an international expert working group convened by the (NC3Rs) to capture practice in CNS neurofunctional assessment tests and opinions on the perceived impact of in vivo test battery endpoints. Impact was defined as "the impact of measures alone/in combination on decision making in drug development or candidate selection when using the neurofunctional assessment". The results demonstrate that rodents are predominantly used for small molecule assessments, whereas non-rodents are frequently used to test biotherapeutics. Practice varied between respondents in terms of experimental design. Subsets of test battery endpoints were consistently considered highly impactful (e.g. convulsions, stereotypic behaviors); however, the perceived impact level of other endpoints varied depending whether drugs were designed for CNS targets. Many endpoints were considered to have no or minimal impact, whereas a subset of endpoints in CNS test batteries appears more impactful than others. A critical evaluation is required to assess whether the translational value of CNS in vivo safety pharmacology assessments could be increased by modifying or augmenting standard CNS test batteries. A revised approach to CNS safety assessment has the potential to reduce animal numbers without compromising patient safety.


Asunto(s)
Desarrollo de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Modelos Animales , Farmacología/métodos , Animales , Sistema Nervioso Central/efectos de los fármacos , Desarrollo de Medicamentos/legislación & jurisprudencia , Desarrollo de Medicamentos/estadística & datos numéricos , Evaluación Preclínica de Medicamentos/estadística & datos numéricos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Farmacología/legislación & jurisprudencia , Proyectos de Investigación/legislación & jurisprudencia , Proyectos de Investigación/estadística & datos numéricos , Encuestas y Cuestionarios
2.
Artículo en Inglés | MEDLINE | ID: mdl-29753134

RESUMEN

INTRODUCTION: The safety-related failure of drugs during clinical phases of development is a significant contributor to drug attrition, wasting resources and preventing treatments from reaching patients. A lack of concordance between results from animal models and adverse events in the clinic has been identified as one potential cause of attrition. In vitro models using human tissue or cells have the potential to replace some animal models and improve predictivity to humans. METHODS: To gauge the current use of human tissue models in safety pharmacology and the barriers to greater uptake, an electronic survey of the international safety assessment community was carried out and a Safety Pharmacology Society European Regional Meeting was organised entitled 'The Use of Human Tissue in Safety Assessment'. RESULTS: A greater range of human tissue models is in use in safety assessment now than four years ago, although data is still not routinely included in regulatory submissions. The barriers to increased uptake of the models have not changed over that time, with inadequate supply and characterisation of tissue being the most cited blocks. DISCUSSION: Supporting biobanking, the development of new human tissue modelling technology, and raising awareness in the scientific and regulatory communities are key ways in which the barriers to greater uptake of human tissue models can be overcome. The development of infrastructure and legislation in the UK to support the use of post-mortem or surgical discard tissue will allow scientists to locally source tissue for research.


Asunto(s)
Bancos de Muestras Biológicas/tendencias , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/tendencias , Animales , Bancos de Muestras Biológicas/normas , Evaluación Preclínica de Medicamentos/normas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Modelos Animales , Obtención de Tejidos y Órganos/métodos , Obtención de Tejidos y Órganos/normas , Obtención de Tejidos y Órganos/tendencias
3.
Br J Pharmacol ; 174(16): 2662-2681, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28677901

RESUMEN

BACKGROUND AND PURPOSE: Our initial aim was to generate cannabinoid agents that control spasticity, occurring as a consequence of multiple sclerosis (MS), whilst avoiding the sedative side effects associated with cannabis. VSN16R was synthesized as an anandamide (endocannabinoid) analogue in an anti-metabolite approach to identify drugs that target spasticity. EXPERIMENTAL APPROACH: Following the initial chemistry, a variety of biochemical, pharmacological and electrophysiological approaches, using isolated cells, tissue-based assays and in vivo animal models, were used to demonstrate the activity, efficacy, pharmacokinetics and mechanism of action of VSN16R. Toxicological and safety studies were performed in animals and humans. KEY RESULTS: VSN16R had nanomolar activity in tissue-based, functional assays and dose-dependently inhibited spasticity in a mouse experimental encephalomyelitis model of MS. This effect occurred with over 1000-fold therapeutic window, without affecting normal muscle tone. Efficacy was achieved at plasma levels that are feasible and safe in humans. VSN16R did not bind to known CB1 /CB2 /GPPR55 cannabinoid-related receptors in receptor-based assays but acted on a vascular cannabinoid target. This was identified as the major neuronal form of the big conductance, calcium-activated potassium (BKCa ) channel. Drug-induced opening of neuronal BKCa channels induced membrane hyperpolarization, limiting excessive neural-excitability and controlling spasticity. CONCLUSIONS AND IMPLICATIONS: We identified the neuronal form of the BKCa channel as the target for VSN16R and demonstrated that its activation alleviates neuronal excitability and spasticity in an experimental model of MS, revealing a novel mechanism to control spasticity. VSN16R is a potential, safe and selective ligand for controlling neural hyper-excitability in spasticity.


Asunto(s)
Benzamidas/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Espasticidad Muscular/tratamiento farmacológico , Animales , Benzamidas/química , Benzamidas/farmacocinética , Benzamidas/farmacología , Perros , Método Doble Ciego , Endocannabinoides/química , Endocannabinoides/farmacocinética , Endocannabinoides/farmacología , Endocannabinoides/uso terapéutico , Femenino , Hepatocitos/metabolismo , Isomerismo , Macaca , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Ratones , Ratones Noqueados , Conejos , Ratas Sprague-Dawley , Ratas Wistar , Receptor Cannabinoide CB1/genética , Receptores de Cannabinoides/genética , Conducto Deferente/efectos de los fármacos , Conducto Deferente/fisiología
4.
Mult Scler Relat Disord ; 1(2): 64-75, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25876933

RESUMEN

Cannabis-based medicines have recently been approved for the treatment of pain and spasticity in multiple sclerosis (MS). This supports the original perceptions of people with MS, who were using illegal street cannabis for symptom control and pre-clinical testing in animal models of MS. This activity is supported both by the biology of the disease and the biology of the cannabis plant and the endocannabinoid system. MS results from disease that impairs neurotransmission and this is controlled by cannabinoid receptors and endogenous cannabinoid ligands. This can limit spasticity and may also influence the processes that drive the accumulation of progressive disability.

5.
Brain ; 126(Pt 10): 2191-202, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12876144

RESUMEN

Multiple sclerosis is increasingly being recognized as a neurodegenerative disease that is triggered by inflammatory attack of the CNS. As yet there is no satisfactory treatment. Using experimental allergic encephalo myelitis (EAE), an animal model of multiple sclerosis, we demonstrate that the cannabinoid system is neuroprotective during EAE. Mice deficient in the cannabinoid receptor CB1 tolerate inflammatory and excitotoxic insults poorly and develop substantial neurodegeneration following immune attack in EAE. In addition, exogenous CB1 agonists can provide significant neuroprotection from the consequences of inflammatory CNS disease in an experimental allergic uveitis model. Therefore, in addition to symptom management, cannabis may also slow the neurodegenerative processes that ultimately lead to chronic disability in multiple sclerosis and probably other diseases.


Asunto(s)
Ácido Aspártico/análogos & derivados , Cannabinoides/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Proteínas de Saccharomyces cerevisiae , Animales , Ácido Aspártico/análisis , Axones/química , Axones/patología , Benzoxazinas , Ciclohexanoles/uso terapéutico , Maleato de Dizocilpina/uso terapéutico , Encefalomielitis Autoinmune Experimental , Agonistas de Aminoácidos Excitadores/uso terapéutico , Eliminación de Gen , Humanos , Ratones , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/genética , Morfolinas/uso terapéutico , Esclerosis Múltiple/patología , N-Metilaspartato/uso terapéutico , Naftalenos/uso terapéutico , Degeneración Nerviosa , Proteínas Nucleares/genética , Receptores de Cannabinoides , Receptores de Droga/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Retina/efectos de los fármacos , Retina/patología , Médula Espinal/patología , Uveítis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA