Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Physiol Biochem ; 146: 163-176, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31756603

RESUMEN

Tubers are vegetative reproduction organs formed from underground extensions of the plant stem. Potato tubers are harvested and stored for months. Storage under cold temperatures of 2-4 °C is advantageous for supressing sprouting and diseases. However, development of reducing sugars can occur with cold storage through a process called cold-induced sweetening (CIS). CIS is undesirable as it leads to darkened color with fry processing. The purpose of the current study was to find differences in biological responses in eight cultivars with variation in CIS resistance. Transcriptome sequencing was done on tubers before and after cold storage and three approaches were taken for gene expression analysis: 1. Gene expression correlated with end-point glucose after cold storage, 2. Gene expression correlated with increased glucose after cold storage (after-before), and 3. Differential gene expression before and after cold storage. Cultivars with high CIS resistance (low glucose after cold) were found to increase expression of an invertase inhibitor gene and genes involved in DNA replication and repair after cold storage. The cultivars with low CIS resistance (high glucose after cold) showed increased expression of genes involved in abiotic stress response, gene expression, protein turnover and the mitochondria. There was a small number of genes with similar expression patterns for all cultivars including genes involved in cell wall strengthening and phospholipases. It is proposed that the pattern of gene expression is related to chilling-induced DNA damage repair and cold acclimation and that genetic variation in these processes are related to CIS.


Asunto(s)
Solanum tuberosum , Frío , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Tubérculos de la Planta , beta-Fructofuranosidasa
2.
BMC Biotechnol ; 17(1): 49, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28587679

RESUMEN

BACKGROUND: Somatic cell selection in plants allows the recovery of spontaneous mutants from cell cultures. When coupled with the regeneration of plants it allows an effective approach for the recovery of novel traits in plants. This study undertook somatic cell selection in the potato (Solanum tuberosum L.) cultivar 'Iwa' using the sulfonylurea herbicide, chlorsulfuron, as a positive selection agent. RESULTS: Following 5 days' exposure of potato cell suspension cultures to 20 µg/l chlorsulfuron, rescue selection recovered rare potato cell colonies at a frequency of approximately one event in 2.7 × 105 of plated cells. Plants that were regenerated from these cell colonies retained resistance to chlorsulfuron and two variants were confirmed to have different independent point mutations in the acetohydroxyacid synthase (AHAS) gene. One point mutation involved a transition of cytosine for thymine, which substituted the equivalent of Pro-197 to Ser-197 in the AHAS enzyme. The second point mutation involved a transversion of thymine to adenine, changing the equivalent of Trp-574 to Arg-574. The two independent point mutations recovered were assembled into a chimeric gene and binary vector for Agrobacterium-mediated transformation of wild-type 'Iwa' potato. This confirmed that the mutations in the AHAS gene conferred chlorsulfuron resistance in the resulting transgenic plants. CONCLUSIONS: Somatic cell selection in potato using the sulfonylurea herbicide, chlorsulfuron, recovered resistant variants attributed to mutational events in the AHAS gene. The mutant AHAS genes recovered are therefore good candidates as selectable marker genes for intragenic transformation of potato.


Asunto(s)
Acetolactato Sintasa/genética , Marcadores Genéticos/genética , Plantas Modificadas Genéticamente/fisiología , Mutación Puntual/genética , Selección Genética/genética , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/fisiología , Sulfonamidas/administración & dosificación , Triazinas/administración & dosificación , Acetolactato Sintasa/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/administración & dosificación , Células Vegetales/enzimología , Células Vegetales/metabolismo
3.
Environ Microbiol ; 17(11): 4730-44, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26271942

RESUMEN

Integrative and conjugative elements (ICEs) contribute to the rapid evolution of bacterial pathogens via horizontal gene transfer of virulence determinants. ICEs have common mechanisms for transmission, yet the cues triggering this process under natural environmental or physiological conditions are largely unknown. In this study, mobilization of the putative ICE horizontally acquired island 2 (HAI2), present in the chromosome of the phytopathogen Pectobacterium atrosepticum SCRI1043, was examined during infection of the host plant potato. Under these conditions, mobilization of HAI2 increased markedly compared with in vitro cultures. In planta-induced mobilization of HAI2 was regulated by quorum sensing and involved the putative ICE-encoded relaxase ECA0613. Disruption of ECA0613 also reduced transcription of genes involved in production of coronafacic acid (Cfa), the major virulence factor harboured on HAI2, whereas their expression was unaffected in the quorum-sensing (expI) mutant. Thus, suppression of cfa gene expression was not regulated by the mobilization of the ICE per se, but was due directly to inactivation of the relaxase. The identification of genetic factors associated solely with in planta mobilization of an ICE demonstrates that this process is highly adapted to the natural environment of the bacterial host and can influence the expression of virulence determinants.


Asunto(s)
Pectobacterium/genética , Pectobacterium/patogenicidad , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Factores de Virulencia/genética , Secuencia de Aminoácidos , Transferencia de Gen Horizontal , Indenos/metabolismo , Islas , Datos de Secuencia Molecular , Pectobacterium/metabolismo , Percepción de Quorum/genética , Alineación de Secuencia , Factores de Virulencia/metabolismo
4.
BMC Genomics ; 15: 2, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24382166

RESUMEN

BACKGROUND: GSL1 and GSL2, Gibberellin Stimulated-Like proteins (also known as Snakin-1 and Snakin-2), are cysteine-rich peptides from potato (Solanum tuberosum L.) with antimicrobial properties. Similar peptides in other species have been implicated in diverse biological processes and are hypothesised to play a role in several aspects of plant development, plant responses to biotic or abiotic stress through their participation in hormone crosstalk, and redox homeostasis. To help resolve the biological roles of GSL1 and GSL2 peptides we have undertaken an in depth analysis of the structure and expression of these genes in potato. RESULTS: We have characterised the full length genes for both GSL1 (chromosome 4) and GSL2 (chromosome 1) from diploid and tetraploid potato using the reference genome sequence of potato, coupled with further next generation sequencing of four highly heterozygous tetraploid cultivars. The frequency of SNPs in GSL1 and GSL2 were very low with only one SNP every 67 and 53 nucleotides in exon regions of GSL1 and GSL2, respectively. Analysis of comprehensive RNA-seq data substantiated the role of specific promoter motifs in transcriptional control of gene expression. Expression analysis based on the frequency of next generation sequence reads established that GSL2 was expressed at a higher level than GSL1 in 30 out of 32 tissue and treatment libraries. Furthermore, both the GSL1 and GSL2 genes exhibited constitutive expression that was not up regulated in response to biotic or abiotic stresses, hormone treatments or wounding. Potato transformation with antisense knock-down expression cassettes failed to recover viable plants. CONCLUSIONS: The potato GSL1 and GSL2 genes are very highly conserved suggesting they contribute to an important biological function. The known antimicrobial activity of the GSL proteins, coupled with the FPKM analysis from RNA-seq data, implies that both genes contribute to the constitutive defence barriers in potatoes. The lethality of antisense knock-down expression of GSL1 and GSL2, coupled with the rare incidence of SNPs in these genes, suggests an essential role for this gene family. These features are consistent with the GSL protein family playing a role in several aspects of plant development in addition to plant defence against biotic stresses.


Asunto(s)
Genes de Plantas , Giberelinas/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Alelos , Cromosomas de las Plantas , Biología Computacional , Secuencia Conservada/genética , Diploidia , Regulación de la Expresión Génica de las Plantas , Giberelinas/química , Giberelinas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Oligonucleótidos Antisentido/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Solanum tuberosum/metabolismo , Tetraploidía
5.
Theor Appl Genet ; 127(3): 677-89, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24370960

RESUMEN

Over-expression of the potato Gibberellin Stimulated-Like 2 ( GSL2 ) gene in transgenic potato confers resistance to blackleg disease incited by Pectobacterium atrosepticum and confirms a role for GSL2 in plant defence. The Gibberellin Stimulated-Like 2 (GSL2) gene (also known as Snakin 2) encodes a cysteine-rich, low-molecular weight antimicrobial peptide produced in potato plants. This protein is thought to play important roles in the innate defence against invading microbes. Over-expression of the GSL2 gene in potato (cultivar Iwa) was achieved using Agrobacterium-mediated gene transfer of a plant expression vector with the potato GSL2 gene under the regulatory control elements of the potato light-inducible Lhca3 gene. The resulting plants were confirmed as being transgenic by PCR, and subsequently analysed for transcriptional expression of the Lhca3-GSL2-Lhca3 chimeric potato gene. Quantitative RT-PCR analysis demonstrated that the majority of the transgenic potato lines over-expressed the GSL2 gene at the mRNA level. Based on qRT-PCR results and evaluation of phenotypic appearance, eight lines were selected for further characterisation and evaluated in bioassays for resistance to Pectobacterium atrosepticum (formerly Erwinia carotovora subsp. atroseptica), the causal agent of blackleg in potato. Three independent pathogenicity bioassays showed that transgenic lines with significantly increased transcriptional expression of the GSL2 gene exhibit resistance to blackleg disease. This establishes a functional role for GSL2 in plant defence against pathogens in potato.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Pectobacterium , Proteínas de Plantas/genética , Solanum tuberosum/genética , ADN de Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Solanum tuberosum/microbiología
6.
G3 (Bethesda) ; 3(11): 2031-47, 2013 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-24062527

RESUMEN

The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker-based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal "pseudomolecules".


Asunto(s)
Mapeo Cromosómico/normas , Cromosomas de las Plantas/genética , Solanum tuberosum/genética , Biomarcadores/metabolismo , Cromosomas de las Plantas/metabolismo , Genoma de Planta , Internet , Interfaz Usuario-Computador
7.
Plant Biotechnol J ; 11(8): 907-20, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23924159

RESUMEN

Potato is the third most important global food crop and the most widely grown noncereal crop. As a species highly amenable to cell culture, it has a long history of biotechnology applications for crop improvement. This review begins with a historical perspective on potato improvement using biotechnology encompassing pathogen elimination, wide hybridization, ploidy manipulation and applications of cell culture. We describe the past developments and new approaches for gene transfer to potato. Transformation is highly effective for adding single genes to existing elite potato clones with no, or minimal, disturbances to their genetic background and represents the only effective way to produce isogenic lines of specific genotypes/cultivars. This is virtually impossible via traditional breeding as, due to the high heterozygosity in the tetraploid potato genome, the genetic integrity of potato clones is lost upon sexual reproduction as a result of allele segregation. These genetic attributes have also provided challenges for the development of genetic maps and applications of molecular markers and genomics in potato breeding. Various molecular approaches used to characterize loci, (candidate) genes and alleles in potato, and associating phenotype with genotype are also described. The recent determination of the potato genome sequence has presented new opportunities for genomewide assays to provide tools for gene discovery and enabling the development of robustly unique marker haplotypes spanning QTL regions. The latter will be useful in introgression breeding and whole-genome approaches such as genomic selection to improve the efficiency of selecting elite clones and enhancing genetic gain over time.


Asunto(s)
Biotecnología/tendencias , Genómica/tendencias , Solanum tuberosum/genética , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Resistencia a la Enfermedad/genética , Endotoxinas/genética , Genoma de Planta , Proteínas Hemolisinas/genética , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente
8.
Mol Genet Genomics ; 287(6): 451-60, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22526372

RESUMEN

In planta the enzymatic activity of apoplastic and vacuolar invertases is controlled by inhibitory proteins. Although these invertase inhibitors (apoplastic and vacuolar forms) have been implicated as contributing to resistance to cold-induced sweetening (CIS) in tubers of potato (Solanum tuberosum L.), there is a lack of information on the structure and allelic diversity of the apoplastic invertase inhibitor genes. We have PCR-isolated and sequenced the alleles of the apoplastic invertase inhibitor gene (Stinh1) from three tetraploid potato genotypes: 1021/1 (a genotype with very high tolerance to CIS), 'Karaka' and 'Summer Delight' (two cultivars that are highly susceptible to CIS). In total, five alleles were identified in these genotypes, of which four (Stinh1-c, Stinh1-d, Stinh1-e, Stinh1-f) were novel. An analysis of allele diversity was conducted by incorporating previously published sequences of apoplastic invertase inhibitors from potato. Eight alleles were assessed for sequence polymorphism in the two exons and the single hypervariable intron. Contrary to the hypervariable intron, only 65 single nucleotide polymorphisms were observed in the exons, of which 42 confer amino acid substitutions. Phylogenetic analysis of amino acid sequences indicates that the alleles of the invertase inhibitor are highly conserved amongst members of the Solanaceae family.


Asunto(s)
Genes de Plantas , Solanum tuberosum/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Frío , ADN de Plantas/genética , Exones , Variación Genética , Intrones , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Homología de Secuencia de Aminoácido , Solanum tuberosum/metabolismo , Tetraploidía , beta-Fructofuranosidasa/antagonistas & inhibidores
9.
BMC Biotechnol ; 11: 93, 2011 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-21995716

RESUMEN

BACKGROUND: The recovery of high performing transgenic lines in clonal crops is limited by the occurrence of somaclonal variation during the tissue culture phase of transformation. This is usually circumvented by developing large populations of transgenic lines, each derived from the first shoot to regenerate from each transformation event. This study investigates a new strategy of assessing multiple shoots independently regenerated from different transformed cell colonies of potato (Solanum tuberosum L.). RESULTS: A modified cry9Aa2 gene, under the transcriptional control of the CaMV 35S promoter, was transformed into four potato cultivars using Agrobacterium-mediated gene transfer using a nptII gene conferring kanamycin resistance as a selectable marker gene. Following gene transfer, 291 transgenic lines were grown in greenhouse experiments to assess somaclonal variation and resistance to potato tuber moth (PTM), Phthorimaea operculella (Zeller). Independently regenerated lines were recovered from many transformed cell colonies and Southern analysis confirmed whether they were derived from the same transformed cell. Multiple lines regenerated from the same transformed cell exhibited a similar response to PTM, but frequently exhibited a markedly different spectrum of somaclonal variation. CONCLUSIONS: A new strategy for the genetic improvement of clonal crops involves the regeneration and evaluation of multiple shoots from each transformation event to facilitate the recovery of phenotypically normal transgenic lines. Most importantly, regenerated lines exhibiting the phenotypic appearance most similar to the parental cultivar are not necessarily derived from the first shoot regenerated from a transformed cell colony, but can frequently be a later regeneration event.


Asunto(s)
Agrobacterium tumefaciens/genética , Proteínas Bacterianas/genética , Biotecnología/métodos , Endotoxinas/genética , Proteínas Hemolisinas/genética , Larva/efectos de los fármacos , Brotes de la Planta/genética , Solanum tuberosum/genética , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Southern Blotting , Endotoxinas/metabolismo , Endotoxinas/farmacología , Técnicas de Transferencia de Gen , Marcadores Genéticos , Variación Genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Insecticidas/metabolismo , Insecticidas/farmacología , Larva/fisiología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/fisiología , Brotes de la Planta/inmunología , Brotes de la Planta/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Regeneración , Solanum tuberosum/inmunología , Solanum tuberosum/metabolismo
10.
Commun Agric Appl Biol Sci ; 74(3): 667-79, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20222549

RESUMEN

Disease resistance is an important objective of global potato breeding programmes. The use of resistant cultivars is a significant tool for disease management. Recent advances in plant molecular genetics have identified several genes for resistance to potato diseases from within the germplasm pool available to potato breeders. Antimicrobial peptides, such as Snakin-1 (StSN1) and Snakin-2 (StSN2), have been isolated recently from potato tubers. Overexpression of the StSNI and StSN2 genes in potato is known to provide broad spectrum activity against a wide range of bacterial and fungal pathogens. We describe the use of intragenic gene transfer technology towards disease resistance in potatoes. An expression cassette was constructed with the 5' promoter and 3' terminator regions of a potato gene encoding a chlorophyll a/b binding protein (StLhca3). The coding regions of the StSN1 and StSN2 genes of potato were cloned individually between these regulatory regions. The resulting Lhca3-StSNi-Lhca3 and Lhca3-StSN2-Lhco3 chimeric genes were individually cloned into a potato-derived T-DNA-like region for potato transformation. Potato cultivar Iwa was co-cultivated with Agrobocterium harbouring intragenic binary vectors with the StSN1 and StSN2 genes. Regenerated potato plants were screened using PCR to identify lines transformed with the disease resistance genes without the presence of foreign DNA.


Asunto(s)
Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Solanum tuberosum/genética , Secuencia de Bases , Cartilla de ADN , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Vectores Genéticos , Intrones/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Brotes de la Planta/genética , Reacción en Cadena de la Polimerasa , Regiones Terminadoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA