Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 11345, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443328

RESUMEN

Species diversification from major to minor carps for their sturdiness and initial higher growth, and also a quest for antibiotic-free aqua farming in the subcontinent, mandates search for and evaluation of alternatives. An experiment was performed to investigate the potential of fructooligosaccharide (FOS) and Bacillus subtilis (BS) (alone or as synbiotics) in promoting growth and immunity against infections in Labeo fimbriatus fingerlings. Six iso-nitrogenous and iso-lipidic diets containing combinations of two levels of FOS (0% and 0.5%) and three levels of BS (0, 104, 106 CFU/g feed) were fed to fish for 60 days. At the end of the feeding trial, twenty-four fish from each group were injected intra-peritoneally with pathogenic strain of Aeromonas hydrophila O:18 to test the immunoprotective efficacy of the supplements against bacterial infection. BS, but not FOS, significantly improved (P < 0.05) growth and feed utilisation attributes like percentage weight gain (PWG), specific growth rate (SGR) and feed conversion ratio (FCR). There were interactive effects of FOS and BS on PWG, SGR and FCR; however, the effects were not additive in nature. These beneficial effects of BS, alone or in combination with FOS, were corroborated by increased protease activity, microvilli density and diameter and number of goblet cells. Overall beneficial effects of FOS and BS included improved erythrocyte (RBC), hemoglobin (Hb), total protein and globulin levels. Total leucocyte (WBC) count and immunological parameters like respiratory burst activity of leucocytes (NBT reduction), lysozyme activity, albumin: globulin ratio and post-challenge survival were significantly improved by both FOS and BS, and their dietary combination yielded the highest improvement in these parameters. Synergistic effects of FOS and BS as dietary supplements indicate that a combination of 106 CFU/g BS and 0.5% FOS is optimal to improve growth, feed utilisation, immune functions, and disease resistance in L. fimbriatus fingerlings.


Asunto(s)
Cyprinidae , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Simbióticos , Animales , Aeromonas hydrophila , Alimentación Animal/análisis , Bacillus subtilis , Dieta , Suplementos Dietéticos , Resistencia a la Enfermedad , Enfermedades de los Peces/microbiología
2.
PLoS One ; 8(9): e74743, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040333

RESUMEN

Exogenous proteolytic enzyme supplementation is required in certain disease conditions in humans and animals and due to compelling reasons on use of more plant protein ingredients and profitability in animal feed industry. However, limitations on their utility in diet are imposed by their pH specificity, thermolabile nature, inhibition due to a variety of factors and the possibility of intestinal damage. For enhancing the efficacy and safety of exogenous trypsin, an efficient chitosan (0.04%) nanoencapsulation-based controlled delivery system was developed. An experiment was conducted for 45 days to evaluate nanoencapsulated trypsin (0.01% and 0.02%) along with 0.02% bare trypsin and 0.4% chitosan nanoparticles against a control diet on productive efficiency (growth rate, feed conversion and protein efficiency ratio), organo-somatic indices, nutrient digestibility, tissue enzyme activities, hematic parameters and intestinal histology of the fish Labeo rohita. All the synthesized nanoparticles were of desired characteristics. Enhanced fish productive efficiency using nanoencapsulated trypsin over its bare form was noticed, which corresponded with enhanced (P<0.01) nutrient digestibility, activity of intestinal protease, liver and muscle tissue transaminases (alanine and aspartate) and dehydrogenases (lactate and malate), serum blood urea nitrogen and serum protein profile. Intestinal tissues of fish fed with 0.02% bare trypsin showed broadened, marked foamy cells with lipid vacuoles. However, villi were healthier in appearance with improved morphological features in fish fed with nanoencapsulated trypsin than with bare trypsin, and the villi were longer in fish fed with 0.01% nanoencapsulated trypsin than with 0.02% nanoencapsulated trypsin. The result of this premier experiment shows that nanoencapsulated trypsin mimics zymogen-like proteolytic activity via controlled release, and hence the use of 0.01% nanoencapsulated trypsin (in chitosan nanoparticles) over bare trypsin can be favored as a dietary supplement in animals and humans.


Asunto(s)
Biomimética , Quitosano/química , Suplementos Dietéticos , Precursores Enzimáticos/química , Nanopartículas/química , Tripsina/química , Albúminas/metabolismo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Glucemia/metabolismo , Dieta , Peces/metabolismo , Tracto Gastrointestinal/enzimología , Concentración de Iones de Hidrógeno , Mucosa Intestinal/metabolismo , Hígado/enzimología , Nitrógeno/química , Tamaño de la Partícula , Tripsina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA