Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biosyst ; 12(9): 2770-6, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27345759

RESUMEN

Fusion of synaptic vesicles with the presynaptic plasma membrane is mediated by Soluble NSF (N-ethylmaleimide-sensitive factor) Attachment Protein Receptor proteins also known as SNAREs. The backbone of this essential process is the assembly of SNAREs from opposite membranes into tight four helix bundles forcing membranes in close proximity. With model systems resembling SNAREs with reduced complexity we aim to understand how these proteins work at the molecular level. Here, peptide nucleic acids (PNAs) are used as excellent candidates for mimicking the SNARE recognition motif by forming well-characterized duplex structures. Hybridization between complementary PNA strands anchored in liposomes through native transmembrane domains (TMDs) induces the merger of the outer leaflets of the participating vesicles but not of the inner leaflets. A series of PNA/peptide hybrids differing in the length of TMDs and charges at the C-terminal end is presented. Interestingly, mixing of both outer and inner leaflets is seen for TMDs containing an amide in place of the natural carboxylic acid at the C-terminal end. Charged side chains at the C-terminal end of the TMDs are shown to have a negative impact on the mixing of liposomes. The length of the TMDs is vital for fusion as with the use of shortened TMDs, fusion was completely prevented.


Asunto(s)
Fusión de Membrana , Modelos Biológicos , Dominios y Motivos de Interacción de Proteínas , Proteínas SNARE/metabolismo , Aminoácidos , Lípidos/química , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Proteínas SNARE/química
2.
Curr Top Membr ; 72: 193-230, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24210431

RESUMEN

Exocytosis is catalyzed by the engagement of SNARE proteins embedded in the plasma membrane with complementary SNAREs in the membrane of trafficking vesicles undergoing exocytosis. In most cells studied so far, SNAREs are not randomly distributed across the plasma membrane but are clustered and segregated in discrete membrane domains of defined size, composition, and stability. SNARE clusters have been intensively studied for more than a decade. Different mechanisms have been proposed to be responsible for SNARE clustering such as partitioning into cholesterol-enriched lipid rafts, hydrophobic mismatch, posttranslational modifications of the SNAREs including phosphorylation and palmitoylation, electrostatic protein-protein and protein-lipid interactions, homotypic and heterotypic protein interactions, and anchoring to the cortical cytoskeleton. Although several of these proposed mechanisms are still controversially discussed, it is becoming apparent that independent physicochemical principles must cooperate in a synergistic manner to yield SNARE microdomains. Here, we discuss the architecture and function of SNARE domains. We also discuss the various factors influencing SNARE clustering, resulting in a model that we believe may be of general use to explain domain formation of proteins in the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Proteínas SNARE/metabolismo , Animales , Calcio/metabolismo , Membrana Celular/química , Colesterol/química , Colesterol/metabolismo , Análisis por Conglomerados , Citoesqueleto/química , Citoesqueleto/metabolismo , Exocitosis , Lipoilación , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Ratones , Simulación de Dinámica Molecular , Células PC12 , Fosforilación , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Ratas , Proteínas SNARE/química
3.
Curr Biol ; 18(10): 715-722, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18485705

RESUMEN

BACKGROUND: In neurons, release of neurotransmitter occurs through the fusion of synaptic vesicles with the plasma membrane. Many proteins required for this process have been identified, with the SNAREs syntaxin 1, SNAP-25, and synaptobrevin thought to constitute the core fusion machinery. However, there is still a large gap between our understanding of individual protein-protein interactions and the functions of these proteins revealed by perturbations in intact synaptic preparations. To bridge this gap, we have used purified synaptic vesicles, together with artificial membranes containing core-constituted SNAREs as reaction partners, in fusion assays. RESULTS: By using complementary experimental approaches, we show that synaptic vesicles fuse constitutively, and with high efficiency, with proteoliposomes containing the plasma membrane proteins syntaxin 1 and SNAP-25. Fusion is inhibited by clostridial neurotoxins and involves the formation of SNARE complexes. Despite the presence of endogenous synaptotagmin, Ca(2+) does not enhance fusion, even if phosphatidylinositol 4,5-bisphosphate is present in the liposome membrane. Rather, fusion kinetics are dominated by the availability of free syntaxin 1/SNAP-25 acceptor sites for synaptobrevin. CONCLUSIONS: Synaptic vesicles are constitutively active fusion machines, needing only synaptobrevin for activity. Apparently, the final step in fusion does not involve the regulatory activities of other vesicle constituents, although these may be involved in regulating earlier processes. This is particularly relevant for the calcium-dependent regulation of exocytosis, which, in addition to synaptotagmin, requires other factors not present in the vesicle membrane. The in vitro system described here provides an ideal starting point for unraveling of the molecular details of such regulatory events.


Asunto(s)
Fusión de Membrana , Proteínas R-SNARE/metabolismo , Vesículas Sinápticas/fisiología , Animales , Calcio/metabolismo , Exocitosis/fisiología , Liposomas/metabolismo , Ratas , Sinapsis/fisiología , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sintaxina 1/metabolismo
4.
EMBO Rep ; 3(8): 798-803, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12151341

RESUMEN

Glutamate is the major excitatory neurotransmitter in the mammalian CNS. It is loaded into synaptic vesicles by a proton gradient-dependent uptake system and is released by exocytosis upon stimulation. Recently, two mammalian isoforms of a vesicular glutamate transporter, VGLUT1 and VGLUT2, have been identified, the expression of which enables quantal release of glutamate from glutamatergic neurons. Here, we report a novel isoform of a human vesicular glutamate transporter (hVGLUT3). The predicted amino acid sequence of hVGLUT3 shows 72% identity to both hVGLUT1 and hVGLUT2. hVGLUT3 functions as a vesicular glutamate transporter with similar properties to the other isoforms when it is heterologously expressed in a neuroendocrine cell line. Although mammalian VGLUT1 and VGLUT2 exhibit a complementary expression pattern covering all glutamatergic pathways in the CNS, expression of hVGLUT3 overlaps with them in some brain areas, suggesting molecular diversity that may account for physiological heterogeneity in glutamatergic synapses.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/química , Sistemas de Transporte de Aminoácidos Acídicos/genética , Secuencia de Aminoácidos , Transporte Biológico , Northern Blotting , Encéfalo/metabolismo , Membrana Celular/metabolismo , Sistema Nervioso Central/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Ácido Glutámico/metabolismo , Humanos , Datos de Secuencia Molecular , Filogenia , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Factores de Tiempo , Distribución Tisular , Transfección , Proteínas de Transporte Vesicular de Glutamato
5.
Mol Cell Biol ; 22(18): 6487-97, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12192047

RESUMEN

Rab3D, a member of the Rab3 subfamily of the Rab/ypt GTPases, is expressed on zymogen granules in the pancreas as well as on secretory vesicles in mast cells and in the parotid gland. To shed light on the function of Rab3D, we have generated Rab3D-deficient mice. These mice are viable and have no obvious phenotypic changes. Secretion of mast cells is normal as revealed by capacitance patch clamping. Furthermore, enzyme content and overall morphology are unchanged in pancreatic and parotid acinar cells of knockout mice. Both the exocrine pancreas and the parotid gland show normal release kinetics in response to secretagogue stimulation, suggesting that Rab3D is not involved in exocytosis. However, the size of secretory granules in both the exocrine pancreas and the parotid gland is significantly increased, with the volume being doubled. We conclude that Rab3D exerts its function during granule maturation, possibly by preventing homotypic fusion of secretory granules.


Asunto(s)
Exocitosis , Vesículas Secretoras/ultraestructura , Proteínas de Unión al GTP rab3/fisiología , Amilasas/metabolismo , Animales , Carbacol/farmacología , Membrana Celular/metabolismo , ADN Complementario/metabolismo , Exones , Cinética , Mastocitos/fisiología , Ratones , Ratones Noqueados , Microscopía Electrónica , Páncreas/fisiología , Glándula Parótida/metabolismo , Glándula Parótida/fisiología , Técnicas de Placa-Clamp , Fenotipo , Isoformas de Proteínas/fisiología , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Proteínas de Unión al GTP rab3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA