RESUMEN
Iodine deficiency is an important nutritional deficiency, with more than 2 billion people worldwide estimated to be at risk. The developing fetus and young children are particularly at risk. During pregnancy and lactation, iodine requirements increase, whether in iodine-poor or iodine-sufficient countries, making the mother and the developing fetus vulnerable. The American Thyroid Association (ATA) recommends 250 micrograms per day of iodine intake for pregnant and lactating women. The thyroid gland is able to adapt to the changes associated with pregnancy as long as sufficient iodine is present. Dietary intake is the sole source of iodine, which is essential to the synthesis of thyroid hormones. Iodine is found in multiple dietary sources including iodized salt, dairy products, seaweed, and fish. Prenatal vitamins containing iodine are a good source of iodine, but iodine content in multivitamin supplements is highly variable. Congenital hypothyroidism is associated with cretinism. Clinical hypothyroidism has been associated with increased risk of poor perinatal outcome including prematurity, low birth weight, miscarriage, preeclampsia, fetal death, and impaired fetal neurocognitive development. Subclinical hypothyroidism is also associated with poor pregnancy outcomes and potential fetal neurocognitive deficits, but the data are more variable than those for clinical hypothyroidism. We concur with the ATA recommendation that all pregnant and lactating women should ingest (through diet and supplements) 250 micrograms of iodine daily. To achieve this goal, we recommend that all pregnant and lactating women take daily iodine supplementation of 150 micrograms.
Asunto(s)
Hipotiroidismo Congénito/prevención & control , Suplementos Dietéticos/provisión & distribución , Yodo/deficiencia , Animales , Hipotiroidismo Congénito/metabolismo , Suplementos Dietéticos/normas , Femenino , Peces , Humanos , Yodo/administración & dosificación , Yodo/metabolismo , Desnutrición , Necesidades Nutricionales/fisiología , Embarazo , Algas Marinas , Cloruro de Sodio Dietético/administración & dosificación , Teratología , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Hormonas Tiroideas/biosíntesis , VitaminasRESUMEN
BACKGROUND: Diethanolamine (DEA), a widely used surfactant, was administered to pregnant mice at the oral LD10 resulting in failure of pups to grow and thrive through postnatal day (PND) 3 [National Toxicology Program, 1987; York et al., Teratology 37:503-504, 1988]. The toxicity profile for DEA differs among rodent species. This study investigated DEA-induced postnatal toxicity in a second species. METHODS: Timed-mated Sprague-Dawley rats were dosed (0, 50, 125, 200, 250, or 300 mg DEA/kg/day, p.o.) on gestational days (GD) 6-19. Dams and pups were monitored for body weight, feed/water intake, clinical signs, litter size, and sex ratio. At necropsy (PND 21), maternal liver and kidney weights and number of uterine implantation sites were recorded. RESULTS: The high-dose group was terminated early due to excessive toxicity. The estimated maternal LD10 was 218 mg/kg/day. Maternal effects included decreased body weight and relative feed intake (>or=200 mg/kg/day), transiently reduced relative water intake (125 and 250 mg/kg/day), and increased absolute kidney weight (>or=125 mg/kg/day). Postimplantation loss (PND 0) and pup mortality (PND 0-4) were increased (>or=200 and >or=125 mg/kg/day, respectively). Pup body weight was reduced (>or=200 mg/kg/day) as late as PND 21. CONCLUSIONS: This study demonstrates reduced postnatal growth and survival in a second species after gestational exposure to DEA, persistence of toxic effects through the end of lactation, possibly due to long elimination half-life, and maternal and developmental toxicity no-observed-adverse-effect level (NOAELs) (50 mg/kg/day) and lowest-observed-adverse-effect level (LOAELs) (125 mg/kg/day) for oral DEA exposure during embryo/fetal development in the rat.
Asunto(s)
Etanolaminas/toxicidad , Exposición Materna , Animales , Animales Recién Nacidos , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Femenino , Crecimiento y Desarrollo/efectos de los fármacos , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-DawleyRESUMEN
Naturally mated female New Zealand White (NZW) rabbits (24/group) received formamide (35, 70, or 140 mg/kg/day) or vehicle (1 ml/kg deionized/distilled water) by gavage on gestational days (GD) 6 through 29. The study was conducted using a 2-replicate design. Maternal food consumption (absolute and relative), body weight, and clinical signs were monitored at regular intervals throughout gestation. One and four maternal deaths occurred at the low and high doses, respectively. Abortions or early deliveries were noted in 0, 2, 2, and 8 females in the 0, 35, 70, and 140-mg/kg/day dose groups, respectively. Other clinical signs associated with formamide exposure were minimal: primarily reduced or absent fecal output at the high dose (2-13 animals/day). Also at the high dose, maternal body weight was significantly depressed on GD 21, 24, and 27 (87-90% of the control value); maternal body weight gain was significantly reduced for GD 12 to 15, 18 to 21, and 21 to 24 (treated animals gained less than 1 g, or lost up to 100 g). In addition, maternal body weight gain was reduced at the middle dose for GD 18 to 21. Maternal body weight gain, corrected for gravid uterine weight, was unaffected. Relative maternal food consumption in the high-dose group was 34-59% of control intake from GD 12 through GD 24, but was comparable to controls thereafter. At termination (GD 30), confirmed-pregnant females (9-20 per group) were evaluated for clinical status, liver weights, and gestational outcome; live fetuses were examined for external, visceral, and skeletal malformations and variations. Maternal liver weight (absolute or relative to body weight) was unaffected by treatment, but gravid uterine weight at the high dose was 71% of the control value. A significantly increasing trend was noted for the percent non-live implants per litter. In addition, although not statistically significant from the control group, the values for the percent late fetal deaths per litter and percent non-live implants per litter in the 140-mg/kg/day group were higher than maximum historical values, suggesting an increase in late gestational deaths in the surviving high-dose animals. Formamide decreased the mean number of live fetuses per litter at the high dose to 66% of the control value. Mean fetal body weight per litter for males and the sexes combined was significantly decreased at the high dose; mean female fetal body weight was also decreased, although the difference did not reach statistical significance. There was no effect of treatment on the incidence of external, visceral, or skeletal malformations or variations in animals surviving to scheduled necropsy. In summary, the no-observed-adverse-effect level (NOAEL) for maternal toxicity was 70 mg/kg/day and the lowest-observed-adverse-effect level (LOAEL) was 140 mg/kg/day under the conditions of this study. Similarly, the NOAEL for developmental toxicity was 70 mg/kg/day and the LOAEL was 140 mg/kg/day.