Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 14: 1279155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111569

RESUMEN

Autoimmune arthritis - such as rheumatoid arthritis - affect a significant proportion of the population, which can cause everyday joint pain, decreased mobility and reduced quality of life. Despite having more and more therapeutic options available, there are still a lot of patients who cannot reach remission or low disease activity by current therapies. This causes an urgent need for the development of new treatment options. The Syk tyrosine kinase plays an essential role in B cell receptor, Fc receptor and integrin signaling. It has been shown that the hematopoietic cell-specific deletion of Syk resulted in a complete protection against autoantibody-induced experimental arthritis. This prompted us to test the effect of entospletinib, a second generation, Syk-selective inhibitor, which has a tolerable safety profile according to hematological clinical trials, in experimental autoimmune arthritis. We found that entospletinib dose-dependently decreased the macroscopic signs of joint inflammation, while it did not affect the health status of the animals. In line with these findings, local neutrophil accumulation and cytokine levels were reduced compared to the vehicle-treated group, while macrophage accumulation and synovial fibroblast numbers were not significantly altered. Meanwhile, entospletinib dose-dependently decreased the cell responses of immune complex- or integrin ligand-activated neutrophils. Overall, we found that selective Syk inhibition by entospletinib reduced the activity of autoantibody-induced experimental arthritis, which seems to be based mainly on the effect of the inhibitor on neutrophil functions. Our data raise the possibility that entospletinib could be a good drug candidate in the treatment of human autoimmune arthritis.


Asunto(s)
Artritis Experimental , Enfermedades Autoinmunes , Animales , Humanos , Quinasa Syk/metabolismo , Calidad de Vida , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/metabolismo , Autoanticuerpos/uso terapéutico , Integrinas/uso terapéutico
2.
Front Immunol ; 10: 252, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30858848

RESUMEN

Activating Fcγ receptors associated with Fc receptor γ-chain (FcRγ) are critical for mediating neutrophil effector functions in immune complex-mediated autoimmune diseases. FcRγ contains ITAM tyrosines and the in vivo role of these tyrosines has not been defined in neutrophils and arthritis. In this study, the in vivo functions of FcRγ ITAM tyrosines were characterized using wild type and ITAM tyrosine mutant (Y65F/Y76F) transgenic mice crossed to an FcRγ-deficient genetic background. FcRγ-deficient neutrophils showed undetectable cell surface expression of the activating Fcγ receptor IV, defective immune complex-induced superoxide production, degranulation and spreading. Although the re-expression of both the wild type and the ITAM tyrosine mutant (Y65F/Y76F) FcRγ could restore activating Fcγ receptor expression of FcRγ-deficient neutrophils, only the wild type transgenic form could mediate Fcγ receptor-dependent effector functions. In contrast, neutrophils carrying ITAM tyrosine mutant FcRγ were unable to produce superoxide, mediate degranulation and perform active spreading. In addition, our results confirmed the protection of FcRγ-deficient mice from autoimmune arthritis. Importantly, the presence of the wild type FcRγ transgene, in contrast to the ITAM tyrosine mutant transgene, partially reversed autoimmune arthritis development. The reversing effect of the wild type transgene was even more robust when animals carried the wild type transgene in a homozygous form. Collectively, FcRγ ITAM tyrosines play a critical role in the induction of neutrophil effector responses, the initiation and progression of an autoantibody-induced experimental arthritis in vivo, indicating a signaling, rather than just a receptor stabilizing function of the molecule.


Asunto(s)
Artritis Experimental/etiología , Activación Neutrófila , Receptores de IgG/fisiología , Secuencias de Aminoácidos , Animales , Complejo Antígeno-Anticuerpo/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de IgG/química , Relación Estructura-Actividad , Tirosina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA