Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RSC Adv ; 12(22): 14069-14083, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35558860

RESUMEN

Use of medicinal plants for the biosynthesis of nanoparticles offers several advantages over other synthesis approaches. Plants contain a variety of bioactive compounds that can participate in reduction and capping of nanoparticles. Plant mediated synthesis has the leverage of cost effectiveness, eco-friendly approach and sustained availability. In the current study Silybum marianum, a medicinally valuable plant rich in silymarin content, is used as a reducing and stabilizing agent for the fabrication of nanoparticles. Biosynthesized CuO-NPs were characterized using High Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS) techniques. Characterization revealed that CuO-NPs having a crystalline structure showed spherical morphology with an average size of 15 nm. HPLC analysis demonstrated conjugation of various silymarin components, especially the presence of silybin A (705.06 ± 1.59 mg g-1 DW). CuO-NPs exhibited strong bactericidal potency against clinically important pathogenic bacterial strains e.g. Enterobacter aerogenes and Salmonella typhi with an inhibition zone of 18 ± 1.3 mm and 17 ± 1.2 mm, respectively. Synthesized nanoparticles indicated a dose dependent cytotoxic effect against fibroblast cells exhibiting a percentage cell viability of 83.60 ± 1.505% and 55.1 ± 1.80% at 25 µg mL-1 and 100 µg mL-1 concentration, respectively. Moreover, CuO-NPs displayed higher antioxidant potential in terms of (TAC: 96.9 ± 0.26 µg AAE/mg), (TRP: 68.8 ± 0.35 µg AAE/mg), (DPPH: 55.5 ± 0.62%), (ABTS: 332.34 µM) and a significant value for (FRAP: 215.40 µM). Furthermore, enzyme inhibition assays also exhibited excellent enzyme inhibition potential against α-amylase (35.5 ± 1.54%), urease (78.4 ± 1.26%) and lipase (80.50.91%), respectively. Overall findings indicated that biosynthesized CuO-NPs possess immense in vitro biological and biomedical properties and could be used as a broad-spectrum agent for a wider range of biomedical applications.

2.
Artif Cells Nanomed Biotechnol ; 49(1): 626-634, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34597252

RESUMEN

Nano-elicitation is one among the prioritised strategies considered globally for sustainable and uniform production of industrially important medicinal compounds. Ocimum basilicum (Thai basil), a renowned medicinal species is a reservoir of commercially vital metabolites and proved for its health assuring effects in cancer, diabetes, microbial and cardiovascular diseases. However, its consumption and industrial demand raised intent to divert towards better alternates for ensuring sustainable production of medicinal compounds. Herein, we investigated the comparative potential of metal oxide [copper oxide (CuO) and manganese oxide (MnO)] nanoparticles to elicit the biosynthesis of bioactive metabolites and antioxidative capacity of O.basilicum callus cultures. Results showed that callus grown on MS media supplemented with 10 mg/L CuO-NPs resulted in the highest biomass accumulation (FW: 172.8 g/L, DW: 16.7 g/L), phenolic contents (TPC: 27.5 mg/g DW), and flavonoid contents (TFC: 9.1 mg/g DW) along with antioxidant activities (DPPH: 94%, ABTS: 881 µM TEAC, FRAP: 386 µM TEAC) compared with MnO-NPs and control. Likewise, the Superoxide dismutase (SOD: 1.28 nM/min/mg FW) and Peroxidase (POD: 0.48 nM/min/mg FW) activities were also recorded maximum in CuO-NPs elicited cultures than MnO-NPs and control. Moreover, the HPLC results showed that rosmarinic acid (11.4 mg/g DW), chicoric acid (16.6 mg/g DW), eugenol (0.21 mg/g DW) was found optimum in cultures at 10 mg/L CuO-NPs. Overall, it can be concluded that CuO nanoparticles can be effectively used as a elicitor for biosynthesis of metabolites in callus cultures of O. basilicum (Thai basil). The study is indeed a contribution to the field that will help decoding the mechanism of action of CuO NPs. However, further molecular investigations are needed to fully develop understanding about the metabolic potential of O. bascillicum and scalling up this protocol for bulkup production of bioactive compounds.


Asunto(s)
Ocimum basilicum
3.
Oxid Med Cell Longev ; 2021: 4786227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34457112

RESUMEN

The anti-cancer, anti-aging, anti-inflammatory, antioxidant, and anti-diabetic effects of zinc oxide nanoparticles (ZnO-NPs) produced from aqueous leaf extract of Aquilegia pubiflora were evaluated in this study. Several methods were used to characterize ZnO-NPs, including SEM, FTIR, XRD, DLS, PL, Raman, and HPLC. The nanoparticles that had a size of 34.23 nm as well as a strong aqueous dispersion potential were highly pure, spherical or elliptical in form, and had a mean size of 34.23 nm. According to FTIR and HPLC studies, the flavonoids and hydroxycinnamic acid derivatives were successfully capped. Synthesized ZnO-NPs in water have a zeta potential of -18.4 mV, showing that they are stable solutions. The ZnO-NPs proved to be highly toxic for the HepG2 cell line and showed a reduced cell viability of 23.68 ± 2.1% after 24 hours of ZnO-NP treatment. ZnO-NPs also showed excellent inhibitory potential against the enzymes acetylcholinesterase (IC50: 102 µg/mL) and butyrylcholinesterase (IC50: 125 µg/mL) which are involved in Alzheimer's disease. Overall, the enzymes involved in aging, diabetes, and inflammation showed a moderate inhibitory response to ZnO-NPs. Given these findings, these biosynthesized ZnO-NPs could be a good option for the cure of deadly diseases such as cancer, diabetes, Alzheimer's, and other inflammatory diseases due to their strong anticancer potential and efficient antioxidant properties.


Asunto(s)
Antineoplásicos/farmacología , Aquilegia/química , Nanopartículas del Metal/administración & dosificación , Extractos Vegetales/farmacología , Hojas de la Planta/química , Especies Reactivas de Oxígeno/farmacología , Óxido de Zinc/química , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Proliferación Celular , Inhibidores de la Colinesterasa/farmacología , Células Hep G2 , Humanos , Hipoglucemiantes/farmacología , Técnicas In Vitro , Nanopartículas del Metal/química
4.
BMC Complement Med Ther ; 21(1): 165, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098912

RESUMEN

BACKGROUND: Himalayan Columbine (Aquilegia pubiflora Wall. Ex Royle) is a medicinal plant and have been used as traditional treatments for various human diseases including skin burns, jaundice, hepatitis, wound healing, cardiovascular and circulatory diseases. Till now there is no report available on phytochemical investigation of Himalayan Columbine and to the best of our knowledge, through present study we have reported for the first time, the phytochemical analysis and pharmacological potentials of different leaf extracts of Aquilegia pubiflora. METHODS: Four types of extracts were prepared using solvent of different polarities (Distilled water APDW, Methanol APM, Ethanol APE and Ethyl acetate APEA), and were evaluated to determine the best candidate for potent bioactivity. Phytochemical constituents in prepared extracts were quantified through HPLC analysis. Subsequently, all four types of leaf extracts were then evaluated for their potential bioactivities including antimicrobial, protein kinase inhibition, anti-inflammatory, anti-diabetic, antioxidant, anti-Alzheimer, anti-aging and cytotoxic effect. RESULTS: HPLC analysis demonstrated the presence of dvitexin, isovitexin, orientin, isoorientin, ferulic acid, sinapic acid and chlorogenic acid in varied proportions in all plant extracts. Antimicrobial studies showed that, K. pneumonia was found to be most susceptible to inhibition zones of 11.2 ± 0.47, 13.9 ± 0.33, 12.7 ± 0.41, and 13.5 ± 0.62 measured at 5 mg/mL for APDW, APM, APE and APEA respectively. A. niger was the most susceptible strain in case of APDW with the highest zone of inhibition 14.3 ± 0.32, 13.2 ± 0.41 in case of APM, 13.7 ± 0.39 for APE while 15.4 ± 0.43 zone of inhibition was recorded in case of APEA at 5 mg/mL. The highest antioxidant activity of 92.6 ± 1.8 µgAAE/mg, 89.2 ± 2.4 µgAAE/mg, 277.5 ± 2.9 µM, 289.9 ± 1.74 µM for TAC, TRP, ABTS and FRAP, respectively, was shown by APE. APM, APE and APEA extracts showed a significant % cell inhibition (above 40%) against HepG2 cells. The highest anti-inflammatory of the samples was shown by APE (52.5 ± 1.1) against sPLA2, (41.2 ± 0.8) against 15-LOX, followed by (38.5 ± 1.5) and (32.4 ± 0.8) against COX-1 and COX-2, respectively. CONCLUSIONS: Strong antimicrobial, Protein Kinase potency and considerable α-glucosidase, α-amylase, and cytotoxic potential were exhibited by plant samples. Significant anti-Alzheimer, anti-inflammatory, anti-aging, and kinase inhibitory potential of each plant sample thus aware us for further detailed research to determine novel drugs.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Aquilegia/química , Fitoquímicos , Extractos Vegetales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Flavonoides/química , Flavonoides/farmacología , Células Hep G2 , Humanos , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología
5.
Molecules ; 25(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096885

RESUMEN

Thai basil is a renowned medicinal plant and a rich source of bioactive antioxidant compounds with several health benefits, with actions to prevent of cancer, diabetes and cardiovascular disease. Plant cell and tissue culture technologies can be routinely established as an important, sustainable and low-cost biomass source to produce high-value phytochemicals. The current study aimed at developing an effective protocol to produce Thai basil leaf-derived callus cultures with sustainable and high production of biomass and antioxidants as an alternative of leaves production. MS basal medium with various concentrations of plant growth regulators (PGRs) compatible with nutraceutical applications (i.e., gibberellic acid (GA3) and 6-benzylaminopurine (BAP) either alone or in combination with naphthalene acetic acid (NAA)) were evaluated. Among all tested PGRs, the combination BAP:NAA (5 mg/L:1 mg/L) yields the maximum biomass accumulation (fresh weight (FW): 190 g/L and dry weight (DW): 13.05 g/L) as well as enhanced phenolic (346.08 mg/L) production. HPLC quantification analysis indicated high productions of chicoric acid (35.77 mg/g DW) and rosmarinic acid (7.35 mg/g DW) under optimized callus culture conditions. Antioxidant potential was assessed using both in vitro cell free and in vivo cellular antioxidant assays. Maximum in vitro antioxidant activity DPPH (93.2% of radical scavenging activity) and ABTS (1322 µM Trolox equivalent antioxidant capacity) was also observed for the extracts from callus cultures grown in optimal conditions. In vivo cellular antioxidant activity assay confirmed the effective protection against oxidative stress of the corresponding extract by the maximum inhibition of ROS and RNS production. Compared to commercial leaves, callus extracts showed higher production of chicoric acid and rosmarinic acid associated with higher antioxidant capacity. In addition, this biological system also has a large capacity for continuous biomass production, thus demonstrating its high potential for possible nutraceutical applications.


Asunto(s)
Antioxidantes/metabolismo , Ocimum basilicum/química , Antioxidantes/química , Antioxidantes/farmacología , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Ocimum basilicum/metabolismo , Picratos/antagonistas & inhibidores , Ácidos Sulfónicos/antagonistas & inhibidores , Tailandia
6.
Mater Sci Eng C Mater Biol Appl ; 112: 110889, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409047

RESUMEN

The purpose of current study was green synthesis of silver nanoparticles (AgNPs) from seeds and wild Silybum plants in comparison with their respective extracts followed by characterization and biological potency. The biologically synthesized AgNPs were subjected to characterization using techniques like XRD, FTIR, TEM, HPLC and SPE. Highly crystalline and stable NPs were obtained using Silybum wild plant (NP1) and seeds (NP3) with size range between 18.12 and 13.20 nm respectively. The synthesized NPs and their respective extracts revealed a vast range of biological applications showing antibacterial, antioxidant, anti-inflammatory, cytotoxic and anti-aging potencies. The highest antioxidant activity (478.23 ± 1.9 µM, 176.91 ± 1.3 µM, 83.5 ± 1.6% µgAAE/mg, 156.32 ± 0.6 µgAAE/mg) for ABTS, FRAP, FRSA, TRP respectively was shown by seed extract (NP4) followed by highest value of (117.35 ± 0.9 µgAAE/mg) for TAC by wild extract (NP2). The highest antifungal activity (13 mm ± 0.76) against Candida albicans was shown by NP3 while antibacterial activity of (6 mm against Klebsiella pneumonia) was shown by NP3 and NP4. The highest anti-inflammatory activity (38.56 ± 1.29 against COX1) was shown by NP2. Similarly, the high value of (48.89 ± 1.34 against Pentosidine-Like AGEs) was shown by NP4. Also, the high anti-diabetic activity (38.74 ± 1.09 against α-amylase) was shown by NP4. The extracts and the synthesized NPs have shown activity against hepato-cellular carcinoma (HepG2) human cells. The HPLC analysis revealed that the highest value of silymarin component (silybin B 2289 mg/g DW) was found for NP4. Silydianin is responsible for capping. Among the green synthesized AgNPs and the extracts used, the effect of NP4 was most promising for further use.


Asunto(s)
Nanopartículas del Metal/química , Extractos Vegetales/química , Plata/química , Silybum marianum/química , Amilasas/antagonistas & inhibidores , Amilasas/metabolismo , Animales , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Fármacos Antidiuréticos/química , Fármacos Antidiuréticos/metabolismo , Antioxidantes/química , Candida albicans/efectos de los fármacos , Bovinos , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 1/metabolismo , Tecnología Química Verde , Células Hep G2 , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Silybum marianum/metabolismo , Semillas/química , Semillas/metabolismo
7.
Molecules ; 25(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397194

RESUMEN

Solanum xanthocarpum is considered an important traditional medicinal herb because of its unique antioxidant, and anti-diabetic, anti-aging, and anti-inflammatory potential. Because of the over exploitation linked to its medicinal properties as well as destruction of its natural habitat, S. xanthocarpum is now becoming endangered and its supply is limited. Plant in vitro culture and elicitation are attractive alternative strategies to produce biomass and stimulate biosynthesis of medicinally important phytochemicals. Here, we investigated the potential influence of seven different monochromatic light treatments on biomass and secondary metabolites accumulation in callus culture of S. xanthocarpum as well as associated biological activities of the corresponding extracts. Among different light treatments, highest biomass accumulation was observed in white light-treated callus culture. Optimum accumulation of total flavonoid contents (TFC) and total phenolic contents (TPC) were observed in callus culture kept under continuous white and blue light respectively than control. Quantification of phytochemicals through HPLC revealed that optimum production of caffeic acid (0.57 ± 0.06 mg/g DW), methyl-caffeate (17.19 mg/g ± 1.79 DW), scopoletin (2.28 ± 0.13 mg/g DW), and esculetin (0.68 ± 0.07 mg/g DW) was observed under blue light callus cultures. Compared to the classic photoperiod condition, caffeic acid, methyl-caffeate, scopoletin, and esculetin were accumulated 1.7, 2.5, 1.1, and 1.09-folds higher, respectively. Moreover, high in vitro cell free antioxidant, anti-diabetic, anti-aging, and anti-inflammatory activities were closely associated with the production of these secondary metabolites. These results clearly showed the interest to apply multispectral light as elicitor of in vitro callus cultures S. xanthocarpum to promote the production of important phytochemicals, and allow us to propose this system as an alternative for the collection of this endangered species from the wild.


Asunto(s)
Antiinflamatorios/metabolismo , Antioxidantes/metabolismo , Flavonoides/biosíntesis , Hipoglucemiantes/metabolismo , Luz , Células Vegetales/metabolismo , Solanum/metabolismo , Solanum/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA