RESUMEN
This study aimed to evaluate the role of photobiomodulation (PBM) in apexification and apexogenesis of necrotic rat molars with an open apex. Rat molars were exposed to the oral environment for 3 weeks. Canals were rinsed with 2.5% NaOCl and 17% EDTA, filled with antibiotic paste and sealed. After 7 days, canals were rinsed and divided into six groups (n=6): mineral trioxide aggregate (MTA); blood clot (BC); human dental pulp stem cells (hDPSC); MTA+PBM; BC+PBM; and hDPSC+PBM. In hDPSC groups, a 1% agarose gel scaffold was used. Two groups were not exposed: healthy tooth+PBM (n = 6), healthy tooth (n = 3); and one was exposed throughout the experiment: necrotic tooth (n = 3). In PBM groups, irradiation was performed with aluminum gallium indium phosphide (InGaAlP) diode laser for 30 days within 24-h intervals. After that, the specimens were processed for histological and immunohistochemical analyses. Necrotic tooth showed greater neutrophil infiltrate (p < 0.05). Necrotic tooth, healthy tooth, and healthy tooth+PBM groups showed absence of a thin layer of fibrous condensation in the periapical area. All the other groups stimulated the formation of a thicker layer of fibers (p < 0.05). All groups formed more mineralized tissue than necrotic tooth (p < 0.05). PBM associated with MTA, BC, or hDPSC formed more mineralized tissue (p < 0.05). MTA+PBM induced apexification (p < 0.05). Rabbit polyclonal anti-bone sialoprotein (BSP) antibody confirmed the histological findings of mineralized tissue formation, and hDPSC groups exhibited higher percentage of BSP-positive cells. It can be concluded that PBM improved apexification and favored apexogenesis in necrotic rat molars with an open apex.
Asunto(s)
Apexificación/métodos , Cavidad Pulpar/efectos de la radiación , Necrosis de la Pulpa Dental/radioterapia , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad/métodos , Ápice del Diente/efectos de la radiación , Enfermedades Dentales/radioterapia , Compuestos de Aluminio/uso terapéutico , Animales , Compuestos de Calcio/uso terapéutico , Pulpa Dental/citología , Cavidad Pulpar/patología , Necrosis de la Pulpa Dental/patología , Combinación de Medicamentos , Inmunohistoquímica , Sialoproteína de Unión a Integrina/análisis , Óxidos/uso terapéutico , Distribución Aleatoria , Ratas Wistar , Reproducibilidad de los Resultados , Silicatos/uso terapéutico , Células Madre , Ápice del Diente/patología , Enfermedades Dentales/patología , Resultado del TratamientoRESUMEN
OBJECTIVES: To assess the viability of multispecies microcosm biofilm after contact with NeoMTA Plus, Biodentine, and MTA Angelus. MATERIALS AND METHODS: Fifty-four human dentin blocks (4 × 5 × 4 mm) were allocated to Hawley retainers, worn by six volunteers for 72 h. The blocks were then individually incubated in BHI broth for 21 days at 37 °C. At the end of experimental time for biofilm growth, the samples were randomly divided into four groups (n = 12): NeoMTA Plus, Biodentine, MTA Angelus, and negative control. The materials were placed in contact with the blocks. All samples were placed in cell-culture plate wells and incubated in BHI broth for 7 days at 37 °C. One sample from each volunteer (n = 6) was analyzed by SEM to describe the biofilm morphology. CLSM was performed to determine the percentage of viable biofilm biovolume. The data were statistically analyzed by one-way ANOVA and Tukey's multiple comparison test (α = 5%). RESULTS: SEM showed biofilm formed by spherical and rod-shaped bacteria surrounded by an extracellular matrix. No material was able to kill all biofilm cells, and all groups had more than 50% of viable bacteria. NeoMTA Plus was significantly different from the negative control group (P < .05). CONCLUSIONS: All tested materials were not effective against multispecies microcosm biofilm. CLINICAL RELEVANCE: NeoMTA Plus, Biodentine, and MTA Angelus were not effective against multispecies microcosm biofilm. It is essential to understand that these bioceramic cements are indicated for infected clinical situations. Thus, complementary disinfection procedures should be conducted prior to filling with these materials.
Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Cementos Dentales/farmacología , Bismuto/farmacología , Compuestos de Calcio/farmacología , Humanos , Ensayo de Materiales , Microscopía Confocal , Óxidos/farmacología , Silicatos/farmacologíaRESUMEN
Abstract This study aimed to evaluate the role of photobiomodulation (PBM) in apexification and apexogenesis of necrotic rat molars with an open apex. Rat molars were exposed to the oral environment for 3 weeks. Canals were rinsed with 2.5% NaOCl and 17% EDTA, filled with antibiotic paste and sealed. After 7 days, canals were rinsed and divided into six groups (n=6): mineral trioxide aggregate (MTA); blood clot (BC); human dental pulp stem cells (hDPSC); MTA+PBM; BC+PBM; and hDPSC+PBM. In hDPSC groups, a 1% agarose gel scaffold was used. Two groups were not exposed: healthy tooth+PBM (n = 6), healthy tooth (n = 3); and one was exposed throughout the experiment: necrotic tooth (n = 3). In PBM groups, irradiation was performed with aluminum gallium indium phosphide (InGaAlP) diode laser for 30 days within 24-h intervals. After that, the specimens were processed for histological and immunohistochemical analyses. Necrotic tooth showed greater neutrophil infiltrate (p < 0.05). Necrotic tooth, healthy tooth, and healthy tooth+PBM groups showed absence of a thin layer of fibrous condensation in the periapical area. All the other groups stimulated the formation of a thicker layer of fibers (p < 0.05). All groups formed more mineralized tissue than necrotic tooth (p < 0.05). PBM associated with MTA, BC, or hDPSC formed more mineralized tissue (p < 0.05). MTA+PBM induced apexification (p < 0.05). Rabbit polyclonal anti-bone sialoprotein (BSP) antibody confirmed the histological findings of mineralized tissue formation, and hDPSC groups exhibited higher percentage of BSP-positive cells. It can be concluded that PBM improved apexification and favored apexogenesis in necrotic rat molars with an open apex.