Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Animal ; 17(5): 100805, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37149993

RESUMEN

The physiological consequences of overstocking require more investigation, and no research has explored whether dietary supplements could mitigate the anticipated negative physiological effects. OmniGen AF (OG, Phibro Animal Health Corporation, Teaneck, NJ, USA) is a nutritional supplement that has been shown to support the immune system of cattle following internal and environmental stressors. This study aimed to determine if a 45-day period of OG feed supplementation would influence whole blood leukocyte messenger RNA abundance, energy metabolism and glucocorticoid concentration, during a two-week period of overstocking. Two stocking density treatments (control: one headlock and lying stall per cow; overstocked: 0.5 headlocks and 0.5 lying stalls per cow) and two diet treatments (control: no added supplement; and OG: 56 g/cow per day) were investigated. Four pens of 15 cows were fed their assigned diet (two pens per diet; control stocking density) for 45 days after which each stocking density treatment was applied for a 14-day period using a cross-over design; this study design was replicated twice. During each 14-day period, blood was collected on day four to measure whole blood leukocyte messenger RNA abundance (cluster of differentiation 80, interleukin 8 receptor-beta, interleukin 10 receptor-beta and L-selectin) and fecal samples were collected every two days to measure fecal cortisol metabolite concentration (11,17-dioxoandrostanes). At the end of each 14-day period, eight cows from each pen were selected for an intravenous glucose tolerance test; glucose, insulin and non-esterified fatty acids were measured. There were no effects of diet or stocking density on leukocyte messenger RNA abundance. Fecal cortisol metabolite concentrations were highest for overstocked cows on the control diet on day four of the stocking density treatment; however, by day 10, overstocked cows fed OG had the highest fecal cortisol metabolite concentrations. Overstocked cows, regardless of diet, had an attenuated insulin response during the glucose tolerance test, represented by a lower area under the curve estimate. Cows fed OG but not overstocked, had a lower non-esterified fatty acid nadir during the glucose challenge, compared to all the other treatments. In conclusion, overstocking prompts a physiological stress response and alters energy metabolism by decreasing the insulin response to an intravenous glucose challenge. Feeding OG during overstocking delayed the increase in fecal cortisol metabolites by several days; however, it is unclear if this altered glucocorticoid response benefited the cow, as OG had no effect on insulin responses or immune parameters.


Asunto(s)
Glucocorticoides , Hidrocortisona , Femenino , Bovinos , Animales , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Lactancia/fisiología , Leche/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Leucocitos/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Metabolismo Energético , Alimentación Animal
2.
J Dairy Sci ; 101(8): 7208-7211, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29778467

RESUMEN

The objective of the study was to evaluate the effect of inorganic phosphorus (Pi) infusion on P absorption in large intestine, milk production, and phosphorus excretion. Four ruminally and ileally cannulated crossbred cows were used in a 4 × 4 Latin square with 21-d periods. Cows were fed a total mixed ration containing 0.21% P, providing 50% of the cows' P requirement. Cobalt-EDTA was used as marker to measure large intestine digesta flow. On d 13 to 21 of each period, each cow was infused daily with 0, 20.1, 40.2, or 60.3 g of Pi into the abomasum and total collection was conducted on d 18 to 21. Ileal samples were collected every 9 h on d 18 to 21. Feed, digesta, and fecal samples were analyzed for total P and Pi using the molybdovanadate yellow method and blue method, respectively. All data were analyzed using PROC GLIMMIX in SAS 9.3 (SAS Institute Inc., Cary, NC) using contrasts to evaluate linear, quadratic, and cubic effects of Pi infusion dose. Dry matter intake, apparent dry matter digestibility, milk yield, and milk total P were unaffected by Pi infusion. Ileal flow and fecal excretion of total P and Pi increased linearly with increasing infused Pi. In the large intestine, net absorption of TP and Pi was increased linearly with increasing infused Pi. The magnitude of absorption from the large intestine was greater than reflected in current models, raising questions that could be evaluated with longer infusion periods or dietary alteration.


Asunto(s)
Abomaso/metabolismo , Bovinos/metabolismo , Absorción Intestinal/fisiología , Leche/metabolismo , Fósforo Dietético/farmacocinética , Animales , Dieta , Digestión , Femenino , Intestino Grueso/metabolismo , Lactancia , Fósforo/metabolismo , Fósforo Dietético/metabolismo , Rumen
3.
J Dairy Sci ; 97(1): 411-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24210479

RESUMEN

Accurate estimates of phosphorus (P) availability from feed are needed to allow P requirements to be met with reduced P intake, thus reducing P excretion by livestock. Exogenous phytase supplementation in poultry and swine diets improves bioavailability of P, and limited research suggests that this strategy may have some application in dairy cattle rations. The effects of exogenous phytase and forage particle length on site and extent of P digestion were evaluated with 5 ruminally and ileally cannulated lactating cows (188 ± 35 d in milk). Cows were assigned in a 2 × 2 factorial arrangement of treatments in 2 incomplete Latin squares with four 21-d periods. Diets contained P slightly in excess of National Research Council requirements with all P from feed sources. During the last 4d of each period, total mixed ration, refusals, omasal, ileal, and fecal samples were collected and analyzed for total P, inorganic P (Pi), and phytate (Pp). Total P intake was not influenced by dietary treatments but Pp intake decreased and Pi intake increased with supplemental phytase, suggesting rapid action of the enzyme in the total mixed ration after mixing. Omasal flow of Pi decreased with phytase supplementation, but we observed no effect of diet in ileal flow or small intestinal digestibility of any P fraction. Fecal excretion of total P was slightly higher and Pp excretion was lower for cows receiving diets supplemented with phytase. Milk yield and composition were unaffected by diets. When phytase was added to the mixed ration, dietary Pp was rapidly degraded before intake and total-tract Pp digestion was increased. The lack of effect of phytase supplementation on dietary P utilization was probably because these late-lactation cows had a low P requirement and were fed P-adequate diets.


Asunto(s)
6-Fitasa/administración & dosificación , Dieta/veterinaria , Digestión , Lactancia , Fósforo Dietético/administración & dosificación , Fósforo Dietético/farmacocinética , Animales , Bovinos , Suplementos Dietéticos , Femenino , Leche/química , Omaso/metabolismo , Ácido Fítico/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA