Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 138, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38408911

RESUMEN

Micronutrient application has a crucial role in mitigating salinity stress in crop plants. This study was carried out to investigate the effect of zinc (Zn) and boron (B) as foliar applications on fenugreek growth and physiology under salt stress (0 and 120 mM). After 35 days of salt treatments, three levels of zinc (0, 50, and 100 ppm) and two levels of boron (0 and 2 ppm) were applied as a foliar application. Salinity significantly reduced root length (72.7%) and shoot length (33.9%), plant height (36%), leaf area (37%), root fresh weight (48%) and shoot fresh weight (75%), root dry weight (80%) and shoot dry weight (67%), photosynthetic pigments (78%), number of branches (50%), and seeds per pod (56%). Fenugreek's growth and physiology were improved by foliar spray of zinc and boron, which increased the length of the shoot (6%) and root length (2%), fresh root weight (18%), and dry root weight (8%), and chlorophyll a (1%), chlorophyll b (25%), total soluble protein content (3%), shoot calcium (9%) and potassium (5%) contents by significantly decreasing sodium ion (11%) content. Moreover, 100 ppm of Zn and 2 ppm of B enhanced the growth and physiology of fenugreek by reducing the effect of salt stress. Overall, boron and zinc foliar spray is suggested for improvement in fenugreek growth under salinity stress.


Asunto(s)
Trigonella , Zinc , Boro/metabolismo , Boro/farmacología , Clorofila A/metabolismo , Estrés Salino , Tensoactivos/metabolismo , Tensoactivos/farmacología , Trigonella/metabolismo , Zinc/metabolismo , Zinc/farmacología
2.
Environ Sci Pollut Res Int ; 25(18): 18071-18080, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29691745

RESUMEN

Plants in Brassica genus have been found to possess strong allelopathic potential. They may inhibit seed germination and emergence of subsequent crops following them in a rotation system. Series of laboratory and greenhouse experiments were conducted to determine the allelopathic impacts of Brassica napus L. against mung bean. We studied (1) the effects of aqueous extract (5%) of different plant parts (root, stem, leaf, flower, and whole plant) of B. napus, (2) the effects of leaf and flower extracts of B. napus at 0, 1, 2, 3, and 4% concentrations, and (3) the effect of residues of different B. napus plant parts and decomposition periods (0, 7, 14, and 21 days) on germination and seedling growth of mung bean. Various types of phenolics including quercitin, chlorogenic acid, p-coumeric acid, m-coumaric acid, benzoic acid, caffeic acid, syringic acid, vanillic acid, ferulic acid, cinamic acid, and gallic acid were identified in plant parts of B. napus. Among aqueous extracts of various plant parts, leaf and flower were found to have stronger inhibitory effects on germination and seedling growth traits of mung bean, higher concentrations were more toxic. The decomposition period changed the phtotoxic effect of residues, more inhibitory effect was shown at 14 days decomposition while decomposition for 21 days reduced inhibitory effect. The more total water-soluble phenolic was found in 5% (w/v) aqueous extract and 5% (w/w) residues of B. napus flowers at 14 days of decomposition (89.80 and 10.47 mg L-1), respectively. The strong inhibitory effects of B. napus should be managed when followed in rotation.


Asunto(s)
Brassica napus/química , Producción de Cultivos/métodos , Germinación/efectos de los fármacos , Feromonas/toxicidad , Extractos Vegetales/toxicidad , Vigna/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Feromonas/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Vigna/crecimiento & desarrollo
3.
PLoS One ; 13(3): e0194319, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29566039

RESUMEN

Salvia verbenaca (wild sage) is a commonly cultivated herbal medicine plant, which is native to the Mediterranean climate regions of Europe, Africa, Asia and the Middle East. However, it has become an invasive species in semi-arid and arid regions of southern Australia. Two varieties are present in this region, var. verbenaca and var. vernalis, each of which can be distinguished by differences in morphology and flowering period. Following trials to determine the optimum temperate regime for germination and response to light and dark, seeds of both varieties were tested for their response to variations in pH, moisture stress, salinity, and burial depth. The temperature and light trial was carried out using three different temperature regimes; 30/20°C, 25/15°C and 20/12°C, and two light regimes; 12 hours light/12 hours dark and 24 hours dark, with var. vernalis responding to relatively higher temperatures than var. verbenaca. The germination rate of neither species was significantly inhibited by complete darkness when compared to rates under periodic light exposure. Both varieties germinated at near optimum rates strongly to very strongly in all pH buffer solutions, from pH 5 to pH 10, but they responded most strongly at neutral pH. Var. vernalis showed slightly more tolerance to reduced moisture availability, moderate to strong salinity, and burial depth, compared to var. verbenaca. However, even a fairly shallow burial depth of 2 cm completely inhibited germination of both varieties. Thus, in circumstances where both varieties are present in a soil seedbank, var. vernalis could be expected to establish in more challenging conditions, where moisture is limited and salinity is 'moderate to high', implying that it is a more serious threat for invasive weed in conditions where crop plants are already challenged.


Asunto(s)
Aclimatación/fisiología , Clima Desértico/efectos adversos , Germinación/fisiología , Especies Introducidas , Malezas/fisiología , Salvia/fisiología , Agricultura/métodos , Concentración de Iones de Hidrógeno , Luz , Salinidad , Semillas/crecimiento & desarrollo , Suelo , Australia del Sur , Temperatura , Control de Malezas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA