Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JCI Insight ; 4(1)2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30626750

RESUMEN

In heart failure and type 2 diabetes mellitus (DM), the majority of patients have hypomagnesemia, and magnesium (Mg) supplementation has improved cardiac function and insulin resistance. Recently, we have shown that DM can cause cardiac diastolic dysfunction (DD). Therefore, we hypothesized that Mg supplementation would improve diastolic function in DM. High-fat diet-induced diabetic mouse hearts showed increased cardiac DD and hypertrophy. Mice with DM showed a significantly increased E/e' ratio (the ratio of transmitral Doppler early filling velocity [E] to tissue Doppler early diastolic mitral annular velocity [e']) in the echocardiogram, left ventricular end diastolic volume (LVEDV), incidence of DD, left ventricular posterior wall thickness in diastole (PWTd), and ratio of heart weight to tibia length (HW/TL) when compared with controls. DM mice also had hypomagnesemia. Ventricular cardiomyocytes isolated from DM mice exhibited decreased mitochondrial ATP production, a 1.7- ± 0.2-fold increase of mitochondrial ROS, depolarization of the mitochondrial membrane potential, and mitochondrial Ca2+ overload. Dietary Mg administration (50 mg/ml in the drinking water) for 6 weeks increased plasma Mg concentration and improved cardiac function. At the cellular level, Mg improved mitochondrial function with increased ATP, decreased mitochondrial ROS and Ca2+ overload, and repolarized mitochondrial membrane potential. In conclusion, Mg supplementation improved mitochondrial function, reduced oxidative stress, and prevented DD in DM.

2.
Circ Arrhythm Electrophysiol ; 6(5): 1018-24, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24036084

RESUMEN

BACKGROUND: Human heart failure (HF) increases alternative mRNA splicing of the type V, voltage-gated cardiac Na+ channel α-subunit (SCN5A), generating variants encoding truncated, nonfunctional channels that are trapped in the endoplasmic reticulum. In this work, we tested whether truncated Na+ channels activate the unfolded protein response (UPR), contributing to SCN5A electric remodeling in HF. METHODS AND RESULTS: UPR and SCN5A were analyzed in human ventricular systolic HF tissue samples and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Cells were exposed to angiotensin II (AngII) and hypoxia, known activators of abnormal SCN5A mRNA splicing, or were induced to overexpress SCN5A variants. UPR effectors, protein kinase R-like ER kinase (PERK), calreticulin, and CHOP, were increased in human HF tissues. Induction of SCN5A variants with AngII or hypoxia or the expression of exogenous variants induced the UPR with concomitant downregulation of Na+ current. PERK activation destabilized SCN5A and, surprisingly, Kv4.3 channel mRNAs but not transient receptor potential cation channel M7 (TRPM7) channel mRNA. PERK inhibition prevented the loss of full-length SCN5A and Kv4.3 mRNA levels resulting from expressing Na+ channel mRNA splice variants. CONCLUSIONS: UPR can be initiated by Na+ channel mRNA splice variants and is involved in the reduction of cardiac Na+ current during human HF. Because the effect is not entirely specific to the SCN5A transcript, the UPR may play an important role in downregulation of multiple cardiac genes in HF.


Asunto(s)
Insuficiencia Cardíaca Sistólica/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Sodio/metabolismo , Respuesta de Proteína Desplegada/fisiología , Angiotensina II/farmacología , Western Blotting , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Calreticulina/metabolismo , Técnicas Electrofisiológicas Cardíacas , Retículo Endoplásmico/metabolismo , Insuficiencia Cardíaca Sistólica/fisiopatología , Humanos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección , eIF-2 Quinasa/metabolismo
3.
J Mol Cell Cardiol ; 56: 44-54, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23247392

RESUMEN

Despite the increasing prevalence of heart failure with preserved left ventricular function, there are no specific treatments, partially because the mechanism of impaired relaxation is incompletely understood. Evidence indicates that cardiac relaxation may depend on nitric oxide (NO), generated by NO synthase (NOS) requiring the co-factor tetrahydrobiopterin (BH(4)). Recently, we reported that hypertension-induced diastolic dysfunction was accompanied by cardiac BH(4) depletion, NOS uncoupling, a depression in myofilament cross-bridge kinetics, and S-glutathionylation of myosin binding protein C (MyBP-C). We hypothesized that the mechanism by which BH(4) ameliorates diastolic dysfunction is by preventing glutathionylation of MyBP-C and thus reversing changes of myofilament properties that occur during diastolic dysfunction. We used the deoxycorticosterone acetate (DOCA)-salt mouse model, which demonstrates mild hypertension, myocardial oxidative stress, and diastolic dysfunction. Mice were divided into two groups that received control diet and two groups that received BH(4) supplement for 7days after developing diastolic dysfunction at post-operative day 11. Mice were assessed by echocardiography. Left ventricular papillary detergent-extracted fiber bundles were isolated for simultaneous determination of force and ATPase activity. Sarcomeric protein glutathionylation was assessed by immunoblotting. DOCA-salt mice exhibited diastolic dysfunction that was reversed after BH(4) treatment. Diastolic sarcomere length (DOCA-salt 1.70±0.01 vs. DOCA-salt+BH(4) 1.77±0.01µm, P<0.001) and relengthening (relaxation constant, τ, DOCA-salt 0.28±0.02 vs. DOCA-salt+BH(4) 0.08±0.01, P<0.001) were also restored to control by BH(4) treatment. pCa(50) for tension increased in DOCA-salt compared to sham but reverted to sham levels after BH(4) treatment. Maximum ATPase rate and tension cost (ΔATPase/ΔTension) decreased in DOCA-salt compared to sham, but increased after BH(4) treatment. Cardiac MyBP-C glutathionylation increased in DOCA-salt compared to sham, but decreased with BH(4) treatment. MyBP-C glutathionylation correlated with the presence of diastolic dysfunction. Our results suggest that by depressing S-glutathionylation of MyBP-C, BH(4) ameliorates diastolic dysfunction by reversing a decrease in cross-bridge turnover kinetics. These data provide evidence for modulation of cardiac relaxation by post-translational modification of myofilament proteins.


Asunto(s)
Biopterinas/análogos & derivados , Fármacos Cardiovasculares/administración & dosificación , Insuficiencia Cardíaca Diastólica/tratamiento farmacológico , Miofibrillas/fisiología , Adenosina Trifosfatasas/metabolismo , Administración Oral , Animales , Biopterinas/administración & dosificación , Proteínas Portadoras/metabolismo , Células Cultivadas , Desoxicorticosterona/farmacología , Diástole/efectos de los fármacos , Suplementos Dietéticos , Glutatión/metabolismo , Insuficiencia Cardíaca Diastólica/diagnóstico por imagen , Insuficiencia Cardíaca Diastólica/fisiopatología , Ratones , Miofibrillas/efectos de los fármacos , Miofibrillas/enzimología , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Volumen Sistólico/efectos de los fármacos , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA