Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cells ; 9(1)2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861943

RESUMEN

Hepatic fibrosis is characterized by the abnormal deposition of extracellular matrix (ECM) proteins. During hepatic fibrogenesis, hepatic stellate cell (HSC) activation followed by chronic injuries is considered a key event in fibrogenesis, and activated HSCs are known to comprise approximately 90% of ECM-producing myofibroblasts. Here, we demonstrated that (-)-catechin-7-O-ß-d-apiofuranoside (C7A) significantly inhibited HSC activation via blocking the signal transducer and activator of transcription 3 (STAT3) signaling pathway. This is the first study to show the hepatic protective effects of C7A with possible mechanisms in vitro and in vivo. In our bioactivity screening, we figured out that the EtOH extract of Ulmusdavidiana var. japonica root barks, which have been used as a Korean traditional medicine, inhibited collagen synthesis in HSCs. Four catechins isolated from the EtOAc fraction of the EtOH extract were compared with each other in terms of reduction in collagen, which is considered as a marker of hepatic protective effects, and C7A showed the strongest inhibitory effects on HSC activation in protein and qPCR analyses. As a possible mechanism, we investigated the effects of C7A on the STAT3 signaling pathway, which is known to activate HSCs. We found that C7A inhibited phosphorylation of STAT3 and translocation of STAT3 to nucleus. C7A also inhibited expressions of MMP-2 and MMP-9, which are downstream genes of STAT3 signaling. Anti-fibrotic effects of C7A were evaluated in a thioacetamide (TAA)-induced liver fibrosis model, which indicated that C7A significantly inhibited ECM deposition through inhibiting STAT3 signaling. C7A decreased serum levels of aspartate amino transferase and alanine transaminase, which were markedly increased by TAA injection. Moreover, ECM-associated proteins and mRNA expression were strongly suppressed by C7A. Our study provides the experimental evidence that C7A has inhibitory effects on HSC activation after live injury and has preventive and therapeutic potentials for the management of hepatic fibrosis.


Asunto(s)
Catequina/administración & dosificación , Células Estrelladas Hepáticas/citología , Factor de Transcripción STAT3/metabolismo , Ulmus/química , Animales , Catequina/química , Catequina/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Humanos , Masculino , Fosforilación , Corteza de la Planta/química , Extractos Vegetales/química , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
J Agric Food Chem ; 67(35): 9789-9795, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31373816

RESUMEN

Pulmonary fibrosis is a chronic lung disease characterized by abnormal accumulation of the extracellular matrix (ECM). Chronic damage of the alveolar epithelium leads to a process called "epithelial-mesenchymal transition" (EMT) and increases synthesis and deposition of ECM proteins. Therefore, inhibition of EMT might be a promising therapeutic approach for the treatment of pulmonary fibrosis. ß-Sitosterol is one of the most abundant phytosterols in the plant kingdom and the major constituent in corn silk, which is derived from the stigma and style of maize (Zea mays). In this study, we elucidated that ß-sitosterol inhibited transforming growth factor-ß1 (TGF-ß1)-induced EMT and consequently had an antifibrotic effect. ß-Sitosterol (1-10 µg/mL) significantly downregulated the TGF-ß1-induced fibrotic proteins, such as collagen, fibronectin, and α-smooth muscle actin in human alveolar epithelial cells (p < 0.01). After 24 h, relative wound density (RWD) was increased in TGF-ß1 treated group (82.16 ± 5.70) compare to the control group (64.63 ± 2.21), but RWD was decreased in ß-sitosterol cotreated group (10 µg/mL: 71.54 ± 7.39; 20 µg/mL: 65.69 ± 6.42). In addition, the changes of the TGF-ß1-induced morphological shape and protein expression of EMT markers, N-cadherin, vimentin, and E-cadherin, were significantly blocked by ß-sitosterol treatment (p < 0.01). The effects of ß-sitosterol on EMT were found to be associated with the TGF-ß1/Snail pathway, which is regulated by Smad and non-Smad signaling pathways. Taken together, these findings suggest that ß-sitosterol can be used to attenuate pulmonary fibrosis through suppression of EMT by inhibiting the TGF-ß1/Snail pathway.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Extractos Vegetales/farmacología , Alveolos Pulmonares/efectos de los fármacos , Fibrosis Pulmonar/fisiopatología , Sitoesteroles/farmacología , Zea mays/química , Actinas/genética , Actinas/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Extractos Vegetales/química , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/fisiopatología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
3.
Molecules ; 24(14)2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31311194

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is increasingly recognized as contributing to the pathogenesis of idiopathic pulmonary fibrosis. Therefore, novel plant-based natural, active compounds have been sought for the treatment of fibrotic EMT. The aim of the present study was to investigate the inhibitory effects of Astilbe rubra on TGF-ß1-induced EMT in lung alveolar epithelial cells (A549). A. rubra was subjected to extraction using 70% ethanol (ARE), and ethanol extracts of the aerial part and that of the rhizome were further partitioned using various solvents. Protein expression and cell motility were investigated to evaluate the inhibitory effects of ARE on EMT. EMT occurred in A549 cells treated with TGF-ß1, but was prevented by co-treatment with ARE. The dichloromethane fractions showed the strongest inhibitory effect on TGF-ß1-induced EMT. ß-Peltoboykinolic acid was isolated from the dichloromethane fractions of A. rubra by activity-oriented isolation. ß-Peltoboykinolic acid not only attenuated TGF-ß1-induced EMT, but also the overproduction of extracellular matrix components including type I collagen and fibronectin. The Smad pathway activated by TGF-ß1 was inhibited by co-treatment with ß-peltoboykinolic acid. Taken together, these results indicate that ß-peltoboykinolic acid from A. rubra and dichloromethane fractions shows potential as an antifibrotic agent in A549 cells treated with TGF-ß1.


Asunto(s)
Células Epiteliales Alveolares/citología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Cloruro de Metileno/farmacología , Saxifragaceae/química , Factor de Crecimiento Transformador beta1/efectos adversos , Células A549 , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Movimiento Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cloruro de Metileno/química , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Rizoma/química , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA