Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 211: 111995, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32836050

RESUMEN

A most crucial feature of biological adaptation is the maintenance of a close temporal relationship of behaviour and physiology with prevailing 24-h light-dark environment, which is rapidly changing with increasing nighttime illumination. This study investigated developmental effects of the loss of night on circadian behaviour, metabolism and gene expressions in diurnal zebra finches born and raised under LL, with controls on 12L:12D. Birds under LD were entrained, and showed normal body mass and a significant 24-h rhythm in both activity-rest pattern and mRNA expression of candidate genes that we measured. But, under LL, birds gained weight and accumulated lipid in the liver. Intriguingly, at the end of the experiment, the majority (4/5th) of birds under LL were rhythmic in activity despite arrhythmic expression in the hypothalamus of c-Fos (neuronal activity), Rhodopsin and Mel1-a genes (light perception), and clock genes (Bmal1, Per2 and Rev-erb ß). In peripheral tissues, LL induced variable clock gene expressions. Whereas 24-h mRNA rhythm was abolished for Bmal1 in both liver and gut, it persisted for Per2 and Rev-erb ß in liver, and for Per2 in gut. Further, we found under LL, the loss of 24-h rhythm in hepatic expression of Fasn and Cd36/Fat (biosynthesis and its uptake), and gut expression of Sglt1, Glut5, Cd36 and Pept1 (nutrient absorption) genes. As compared to LD, baseline mRNA levels of Fasn and Cd36 genes were attenuated under LL. Among major transporter genes, Sglt1 (glucose) and Cd36 (fat) genes were arrhythmic, while Glut5 (glucose) and Pept1 (protein) genes were rhythmic but with phase differences under LL, compared to LD. These results demonstrate dissociation of circadian behaviour from clock gene rhythms, and provide molecular insights into possible mechanisms at different levels (behaviour and physiology) that diurnal animals might employ in order to adapt to an emerging overly illuminated-night urban environment.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica/fisiología , Hipotálamo/fisiología , Metabolismo/fisiología , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Pinzones , Transportador de Glucosa de Tipo 5/genética , Transportador de Glucosa de Tipo 5/metabolismo , Luz , Hígado , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Fotoperiodo , ARN Mensajero/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/metabolismo , Estómago
2.
Chronobiol Int ; 36(9): 1268-1284, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31296059

RESUMEN

Under periodic day-night environment, most circadian functions maintain a close phase relationship relative to each other, suggesting a common circadian pacemaker control of different overt rhythms. In birds, this seems highly unlikely, given multioscillatory nature of the circadian pacemaker and downstream generation of several circadian behaviors. We hypothesized the dissociation of overt rhythms from circadian gene oscillations, if the two were loosely coupled, under an aperiodic light condition. We tested this in daily rhythms in singing, activity and clock gene expressions in adult male zebra finches (Taeniopygia guttata) that were born and raised under the constant light (LL; 24L:0D), with controls on an LD cycle (12L: 12D). Particularly, we monitored daily pattern of singing and activity behavior, and measured 24 h mRNA expression of immediate early gene (c-Fos), clock genes (Bmal1, Per2 and Rev-erb ß) and epigenetic marker genes (Dnmt3b and Tet2) in the hypothalamus, and of clock genes and genes coding for the aromatase (Arom), androgen receptor (Ar) and dopamine receptor (Drd2) in the song control nuclei (Area X and HVC) and cerebellum (motor control region). We found persistence of daily rhythms in activity and singing in all birds under LD, but in only 70% (14/20) birds under LL; thus, both behaviors were arrhythmic in 30% (6/20) birds) under LL. The overall song quality was also declined under LL. The clock genes showed daily rhythms in the hypothalamus, song control nuclei (except Per2 in Area X) and cerebellum under LD, although with differences in peak expression times; however, there was loss of rhythmicity in clock genes (except Bmal1 in Area X and HVC) under LL. We also found daily Ar mRNA rhythm in the Area X and cerebellum under LD. These results demonstrate for the first time the persistence of clock gene oscillations in the song control brain regions and show the dissociation of circadian behavior from genetic oscillations in relation to an imposed light environment.


Asunto(s)
Cerebelo/fisiología , Ritmo Circadiano , Pinzones/fisiología , Regulación de la Expresión Génica , Hipotálamo/fisiología , Vocalización Animal , Animales , Relojes Circadianos , Epigénesis Genética , Luz , Masculino , Actividad Motora , Fotoperiodo , ARN Mensajero/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA