Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 241(3): 1088-1099, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37991013

RESUMEN

Stoichiometric rules may explain the allometric scaling among biological traits and body size, a fundamental law of nature. However, testing the scaling of elemental stoichiometry and growth to size over the course of plant ontogeny is challenging. Here, we used a fast-growing bamboo species to examine how the concentrations and contents of carbon (C), nitrogen (N) and phosphorus (P), relative growth rate (G), and nutrient productivity scale with whole-plant mass (M) at the culm elongation and maturation stages. The whole-plant C content vs M and N content vs P content scaled isometrically, and the N or P content vs M scaled as a general 3/4 power function across both growth stages. The scaling exponents of G vs M and N (and P) productivity in newly grown mass vs M relationships across the whole growth stages decreased as a -1 power function. These findings reveal the previously undocumented generality of stoichiometric allometries over the course of plant ontogeny and provide new insights for understanding the origin of ubiquitous quarter-power scaling laws in the biosphere.


Asunto(s)
Fósforo , Plantas , Desarrollo de la Planta , Tamaño Corporal , Nitrógeno
3.
J Plant Res ; 136(4): 515-525, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37055608

RESUMEN

Nutrient availability significantly regulates plant growth and metabolic functions, but whether and how the long-term exposure of ancestral plants to contrasting nutrient environments influences offspring phenotypic performance (i.e., transgenerational plasticity) remain poorly addressed. Here we conducted experimental manipulations using Arabidopsis thaliana with the ancestral plants grown in different nitrogen (N) and phosphorus (P) availabilities over eleven consecutive generations, and then examined the offspring phenotypic performance under the interactive effects of current and ancestral nutrient environments. We found that current rather than ancestral nutrient environments dominantly explained the variations in offspring plant traits (i.e., flowering time, aboveground biomass and biomass allocation fractions), suggesting the relatively weak transgenerational effects of ancestral N and P availabilities on offspring phenotypes. In contrast, increasing N and P availabilities in the offspring generation remarkably shortened the flowering time, increased the aboveground biomass, and altered biomass allocation fractions differentially among organs. Despite the overall weak transgenerational phenotypic plasticity, under the low nutrient environment, the offspring of ancestral plants from the low nutrient environment had a significantly higher fruit mass fraction than those from the suitable nutrient environment. Taken together, our findings suggest that A. thaliana exhibits a much stronger within- than trans-generational trait plasticity under contrasting nutrient availabilities, and may provide important insights into the understanding of plant adaptation and evolutionary processes under changing nutrient environments.


Asunto(s)
Arabidopsis , Fósforo , Fósforo/metabolismo , Nitrógeno/metabolismo , Fenotipo , Biomasa
4.
Sci Total Environ ; 846: 157456, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35863563

RESUMEN

High atmospheric nitrogen (N) deposition and low soil phosphorus (P) availability occur simultaneously in tropical areas, and thus tropical plants need to adapt nutrient-use strategies to maintain growth and survival. Therefore, identifying the adaptative strategies of tropical plants at different successional stages under low soil P availability is indispensable. Here, we separately investigated foliar traits, photosynthetic characteristics, and P fractions of 8 species in the primary and secondary tropical forests after 10 years of N and P fertilization. P addition increased foliar P concentrations and deceased N:P ratio in the primary forest and secondary forest. The foliar photosynthetic rates did not significantly respond to nutrient additions, and the foliar photosynthetic P-use efficiency (PPUE) reduced under the P addition in the primary forest. In contrast, the foliar photosynthetic rates and photosynthetic nitrogen (N)-use efficiency (PNUE) were enhanced with nutrient additions in the secondary forest. The allocations of foliar nucleic acid P and residual P were reduced by P addition in the primary forest, whereas the allocation of metabolic P was enhanced and the allocation of residual P was reduced by P addition in the secondary forest. Additionally, a higher proportion of structural P was found in the primary forest, and a higher proportion of metabolic P was observed in the secondary forest. Interesting, structural equation model analysis revealed that the plants decreased the allocation of foliar nucleic acid P and increased the allocation of structural P in the primary forest, thereby reducing photosynthetic rates. Whereas the plants enhanced photosynthetic rates by promoting PPUE and the allocation of foliar metabolic P in the secondary forest. Our findings highlighted tropical plants at different successional stages can reasonably allocate foliar P to regulate photosynthetic rates and acclimate to low P environments.


Asunto(s)
Ácidos Nucleicos , Fósforo , Bosques , Nitrógeno/análisis , Ácidos Nucleicos/análisis , Fósforo/análisis , Fotosíntesis , Hojas de la Planta/química , Suelo/química , Árboles , Clima Tropical
5.
Sci Total Environ ; 818: 151742, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34808187

RESUMEN

Land-use change can lead to profound changes in the storage of soil organic carbon (SOC) in the tropics. Soil microbial residues make up the majority of persistent SOC pools, yet the impact of land-use change on microbial residue C accumulation in the tropics is not well understood. Here, we investigated how the conversion of tropical primary montane rainforest to secondary forest and the conversions of secondary forest to Prunus salicina plantation and tea plantation, influence the accumulation of soil microbial residue C (indicated by amino sugars). Our results showed that the secondary forest had a higher SOC than that of the primary forest (+63%), while they had no difference in microbial residue C concentration, indicating a relatively slow microbial-derived C accrual during secondary succession. Moreover, the P. salicina plantation and tea plantation had lower SOC than the secondary forest (-53% and -57%, respectively). A decrease in fungal biomass (-51%) resulted in less fungal and total residue C concentrations in the tea plantation than in the secondary forest (-38% and -35%, respectively), indicating microbial-derived C loss following the forest conversion. The change in microbial residue C depended on litter standing crop rather than soil nutrient and root biomass. Litter standing crop affected microbial residue C concentration by regulating fungal biomass and hydrolytic enzyme activities. Taken together, our results highlight that litter-microbe interactions drive microbial residue C accumulation following forest conversions in the tropics.


Asunto(s)
Carbono , Suelo , Carbono/análisis , China , Bosques , Suelo/química , Microbiología del Suelo ,
6.
Environ Pollut ; 243(Pt A): 75-86, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30172126

RESUMEN

China has been experiencing a rapid increase in nitrogen (N) deposition due to intensified anthropogenic N emissions since the late 1970s. By synthesizing experimental and observational data taken from literature, we reviewed the responses of China's forests to increasing N deposition over time, with a focus on soil biogeochemical properties and acidification, plant nutrient stoichiometry, understory biodiversity, forest growth, and carbon (C) sequestration. Nitrogen deposition generally increased soil N availability and soil N leaching and decreased soil pH in China's forests. Consequently, microbial biomass C and microbial biomass N were both decreased, especially in subtropical forests. Nitrogen deposition increased the leaf N concentration and phosphorus resorption efficiency, which might induce nutrient imbalances in the forest ecosystems. Although experimental N addition might not affect plant species richness in the overstorey, it did significantly alter species composition of understory plants. Increased N stimulated tree growth in temperate forests, but this effect was weak in subtropical and tropical forests. Soil respiration in temperate forests was non-linearly responsive to N additions, with an increase at dosages of <60 kg N ha-1 yr-1 and a decrease at dosages of >60 kg N ha-1 yr-1. However, it was consistently decreased by increased N inputs in subtropical and tropical forests. In light of future trends in the composition (e.g., reduced N vs. oxidized N) and the loads of N deposition in China, further research on the effects of N deposition on forest ecosystems will have critical implications for the management strategies of China's forests.


Asunto(s)
Ecosistema , Bosques , Nitrógeno/metabolismo , Desarrollo de la Planta , Suelo/química , Árboles/metabolismo , Carbono/análisis , China , Microbiota/efectos de los fármacos , Nitrógeno/análisis , Nitrógeno/farmacología , Fósforo/análisis , Desarrollo de la Planta/efectos de los fármacos , Microbiología del Suelo , Árboles/química , Árboles/efectos de los fármacos
7.
J Plant Res ; 130(6): 1035-1045, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28653222

RESUMEN

Nitrogen (N) and phosphorus (P) availabilities play crucial roles in plant morphogenesis and physiological processes, but how plant anatomical traits respond to the N and P supply is not well elucidated. We evaluated the effects of N and P supply on multiple leaf and stem anatomical traits of Arabidopsis thaliana. The addition of N increased the stem diameter, cortex thickness, rosette radius, midrib thickness, and size of leaf and stem vasculature significantly. Abaxial stomatal length (LSL) increased while adaxial epidermal cell density decreased significantly with increasing N supply. P addition did not affect stem size and leaf epidermal traits, but enhanced the thickness of stem xylem. The nutrient limiting status did not affect most traits except for LSL. The anatomical traits measured varied a lot in the extent of response to N and P addition, despite relatively stronger response to N addition overall. Cortex thickness, rosette radius, stomatal density and epidermal cell density exhibited relatively high plasticity to both nutrients, while stomatal length and stomatal index were relatively stable. Thus, these results suggested that the anatomical traits of shoot vasculature of A. thaliana were enhanced by both nutrients but more affected by N addition, satisfying the plant growth and nutrient requirements. Our findings may help shed light on plant adaptation to nutrient availability changes under the ongoing anthropogenic impacts, but the generality across numerous plant species still warrants further researches.


Asunto(s)
Arabidopsis/efectos de los fármacos , Nitrógeno/farmacología , Fósforo/farmacología , Adaptación Fisiológica , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/crecimiento & desarrollo , Xilema/anatomía & histología , Xilema/efectos de los fármacos , Xilema/crecimiento & desarrollo
8.
Sci Rep ; 4: 5448, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24965183

RESUMEN

Allocation of limiting resources, such as nutrients, is an important adaptation strategy for plants. Plants may allocate different nutrients within a specific organ or the same nutrient among different organs. In this study, we investigated the allocation strategies of nitrogen (N) and phosphorus (P) in leaves, stems and roots of 126 shrub species from 172 shrubland communities in Northern China using scaling analyses. Results showed that N and P have different scaling relationships among plant organs. The scaling relationships of N concentration across different plant organs tended to be allometric between leaves and non-leaf organs, and isometric between non-leaf organs. Whilst the scaling relationships of P concentration tended to be allometric between roots and non-root organs, and isometric between non-root organs. In arid environments, plant tend to have higher nutrient concentration in leaves at given root or stem nutrient concentration. Evolutionary history affected the scaling relationships of N concentration slightly, but not affected those of P concentration. Despite fairly consistent nutrients allocation strategies existed in independently evolving lineages, evolutionary history and environments still led to variations on these strategies.


Asunto(s)
Ecosistema , Nitrógeno/metabolismo , Organogénesis de las Plantas/fisiología , Fósforo/metabolismo , Estructuras de las Plantas/metabolismo , China , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA