Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Inflamm Res ; 16: 6329-6348, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152570

RESUMEN

Purpose: Neuroinflammation is a significant etiological factor in the development of depression. Traditional Chinese medicine (TCM) has demonstrated notable efficacy in the treatment of inflammation. Our previous study surfaces that the active fraction of Polyrhachis vicina Roger (AFPR) has antidepressant and anti-neuroinflammatory effects, but the specific mechanisms remain to be elucidated. The objective of this study was to examine the impact of AFPR on inflammation in depression via the FTO/miR-221-3p/SOCS1 axis. Methods: Chronic unpredictable stress (CUMS)-induced rats and LPS-induced BV2 cells were employed to simulate depression models in vivo and in vitro. The levels of inflammatory factors were detected using the ELISA assay. The expression of genes and proteins was detected using qRT-PCR and Western blot. Gene interactions were detected using the dual luciferase reporter gene. Protein-RNA interactions were investigated using RNA methylation immunoprecipitation (MeRIP) and RNA immunoprecipitation (RIP). Neuroinflammation in the brain was examined through H&E staining, while neuronal apoptosis was assessed using TUNEL staining. Results: The results showed that AFPR ameliorated depression induced inflammation by increasing SOCS1 expression. However, SOCS1 was identified as a target of miR-221-3p. Overexpression of miR-221-3p decreased the expression of SOCS1 and increased the levels of NF-κB, IL-7, and IL-6. In addition, we found that miR-221-3p was regulated by FTO-mediated m6A modification through MeRIP and RIP experiments. Interference with miR-221-3p and overexpression of FTO resulted in increased SOCS1 gene expression and decreased levels of NF-κB, IL-7, and IL-6, which were reversed by AFPR. Conclusion: AFPR inhibits the maturation of pri-miR-221-3p through FTO-mediated m6A modification, reduces the production of miR-221-3p, increases the expression of SOCS1, and reduces the level of inflammation, thereby improving depressive symptoms.

2.
Drug Des Devel Ther ; 17: 717-735, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923105

RESUMEN

Purpose: To investigate the mechanisms of antidepressant action of active fraction of Polyrhachis vicina Rogers (AFPR) through network pharmacology, molecular docking and experimental validation. Methods: GC-MS was used to predict chemical compounds, corresponding databases were used to predict chemical compound targets and depression targets, Cytoscape software was used to construct and analyze the protein interaction network map, DAVID database was used to analyze gene ontology (GO) and KEGG signaling pathway, and AGFR software was used to perform molecular docking. Subsequently, the underlying action mechanisms of AFPR on depression predicted by network pharmacology analyses were experimentally validated in a CORT-induced depression model in vitro and in vivo. Results: A total of 52 potential targets of AFPR on antidepressant were obtained. GO is mainly related to chemical synaptic transmission, signal transduction and others. KEGG signaling pathways are mainly related to cAMP signaling pathway and C-type lectin receptor signaling pathway. The experiment results showed that AFPR significantly increased the expression of PRKACA, CREB and BDNF in mouse brain tissue and PC12 cells. Furthermore, after interfered of cAMP in PC12 cells, the decreased expression of PRKACA, CREB and BDNF was reversed by AFPR. Conclusion: AFPR may exert antidepressant effects through multiple components, targets and pathways. Furthermore, it could improve neuroplasticity via the cAMP signaling pathway to improve depression-like symptoms.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Medicamentos Herbarios Chinos , Ratas , Animales , Ratones , Simulación del Acoplamiento Molecular , Depresión/tratamiento farmacológico , Farmacología en Red , Mapas de Interacción de Proteínas , Medicina Tradicional China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA