Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Foods ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540959

RESUMEN

Silkie chicken, an important chicken breed with high medicinal and nutritional value, has a long history of being used as a dietary supplement in China. However, the compounds with health-promoting effects in Silkie chickens remain unclear. In the present study, we conducted a comprehensive analysis of metabolic and lipidomic profiles to identify the characteristic bioactive compounds in Silkie chickens, using a common chicken breed as control. The results showed that the levels of 13 metabolites including estradiol, four lipid subclasses including cardiolipin (CL), eight lipid molecules, and three fatty acids including docosahexaenoic acid (C22:6) were significantly increased in Silkie chickens, which have physiological activities such as resisting chronic diseases and improving cognition. These characteristic bioactive compounds have effects on meat quality characteristics, including improving its water-holding capacity and umami taste and increasing the content of aromatic compounds and phenols. The differentially expressed genes (DEGs) between the two chicken breeds revealed the regulatory network for these characteristic bioactive compounds. Fifteen DEGs, including HSD17B1, are involved in the synthesis of characteristic metabolites. Eleven DEGs, including ELOVL2, were involved in the synthesis and transport of characteristic lipids and fatty acids. In summary, we identified characteristic bioactive compounds in Silkie chickens, and analyzed their effects on meat quality characteristics. This study provided important insight into Silkie chicken meat as a functional food.

2.
Genes (Basel) ; 12(11)2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34828373

RESUMEN

Molting in birds provides us with an ideal genetic model for understanding aging and rejuvenation since birds present younger characteristics for reproduction and appearance after molting. Forced molting (FM) by fasting in chickens causes aging of their reproductive system and then promotes cell redevelopment by providing water and feed again. To reveal the genetic mechanism of rejuvenation, we detected blood hormone indexes and gene expression levels in the hypothalamus and ovary of hens from five different periods during FM. Three hormones were identified as participating in FM. Furthermore, the variation trends of gene expression levels in the hypothalamus and ovary at five different stages were found to be basically similar using transcriptome analysis. Among them, 45 genes were found to regulate cell aging during fasting stress and 12 genes were found to promote cell development during the recovery period in the hypothalamus. In addition, five hub genes (INO80D, HELZ, AGO4, ROCK2, and RFX7) were identified by WGCNA. FM can restart the reproductive function of aged hens by regulating expression levels of genes associated with aging and development. Our study not only enriches the theoretical basis of FM but also provides insights for the study of antiaging in humans and the conception mechanism in elderly women.


Asunto(s)
Envejecimiento/genética , Proteínas Aviares/genética , Pollos/fisiología , Muda , Animales , Senescencia Celular , Pollos/sangre , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hormonas/sangre , Hipotálamo/química , Ovario/química
3.
Genes (Basel) ; 13(1)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35052428

RESUMEN

Molting is natural adaptation to climate change in all birds, including chickens. Forced molting (FM) can rejuvenate and reactivate the reproductive potential of aged hens, but the effect of natural molting (NM) on older chickens is not clear. To explore why FM has a dramatically different effect on chickens compared with NM, the transcriptome analyses of the hypothalamus and ovary in forced molted and natural molted hens at two periods with feathers fallen and regrown were performed. Additionally, each experimental chicken was tested for serological indices. The results of serological indices showed that growth hormone, thyroid stimulating hormone, and thyroxine levels were significantly higher (p < 0.05) in forced molted hens than in natural molted hens, and calcitonin concentrations were lower in the forced molted than in the natural molted hens. Furthermore, the transcriptomic analysis revealed a large number of genes related to disease resistance and anti-aging in the two different FM and NM periods. These regulatory genes and serological indices promote reproductive function during FM. This study systematically revealed the transcriptomic and serological differences between FM and NM, which could broaden our understanding of aging, rejuvenation, egg production, and welfare issues related to FM in chickens.


Asunto(s)
Proteínas Aviares/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hormonas/sangre , Hipotálamo/metabolismo , Muda/fisiología , Ovario/metabolismo , Transcriptoma , Envejecimiento , Animales , Proteínas Aviares/genética , Pollos , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Femenino , Perfilación de la Expresión Génica , Hipotálamo/crecimiento & desarrollo , Ovario/crecimiento & desarrollo
4.
BMC Genomics ; 19(1): 844, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30486769

RESUMEN

BACKGROUND: Increased attention is being paid to breast muscle yield and meat quality in the duck breeding industry. Our previous report has demonstrated that dietary Clostridium butyricum (C. butyricum) can improve meat quality of Pekin ducks. However, the potential biological processes and molecular mechanisms that are modulated by dietary C. butyricum in the breast muscle of Pekin ducks remain unknown. RESULTS: Supplementation with C. butyricum increased growth performance and meat yield. Therefore, we utilized de novo assembly methods to analyze the RNA-Seq transcriptome profiles in breast muscle to explore the differentially expressed genes between C. butyricum-treated and control Pekin ducks. A total of 1119 differentially expressed candidate genes were found of which 403 genes were significantly up-regulated and 716 genes were significantly down-regulated significantly. qRT-PCR analysis was used to confirm the accuracy of the of RNA-Seq results. GO annotations revealed potential genes, processes and pathways that may participate in meat quality and muscle development. KEGG pathway analysis showed that the differentially expressed genes participated in numerous pathways related to muscle development, including ECM-receptor interaction, the MAPK signaling pathway and the TNF signaling pathway. CONCLUSIONS: This study suggests that long-time dietary supplementation with C. butyricum can modulate muscle development and meat quality via altering the expression patterns of genes involved in crucial metabolic pathways. The findings presented here provide unique insights into the molecular mechanisms of muscle development in Pekin ducks in response to dietary C. butyricum.


Asunto(s)
Clostridium butyricum/metabolismo , Patos/genética , Perfilación de la Expresión Génica , Glándulas Mamarias Animales/metabolismo , Músculos/metabolismo , Probióticos/farmacología , Análisis de Secuencia de ARN , Transcriptoma/genética , Animales , Análisis por Conglomerados , Suplementos Dietéticos , Regulación hacia Abajo/genética , Patos/crecimiento & desarrollo , Patos/microbiología , Femenino , Ontología de Genes , Masculino , Carne , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA