Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Chino | WPRIM | ID: wpr-970604

RESUMEN

This study aimed to explore the mechanism of Cistanches Herba in the treatment of cancer-induced fatigue(CRF) by network pharmacology combined with in vivo and in vitro experiments to provide a theoretical basis for the clinical medication. The chemical constituents and targets of Cistanches Herba were searched from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of CRF were screened out by GeneCards and NCBI. The common targets of traditional Chinese medicine and disease were selected to construct a protein-protein interaction(PPI) network, followed by Gene Ontology(GO) functional and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. A visual signal pathway rela-ted to Chinese medicine and disease targets was constructed. The CRF model was induced by paclitaxel(PTX) in mice. Mice were divided into a control group, a PTX model group, and low-and high-dose Cistanches Herba extract groups(250 and 500 mg·kg~(-1)). The anti-CRF effect in mice was evaluated by open field test, tail suspension test, and exhaustive swimming time, and the pathological morphology of skeletal muscle was evaluated by hematoxylin-eosin(HE) staining. The cancer cachexia model in C2C12 muscle cells was induced by C26 co-culture, and the cells were divided into a control group, a conditioned medium model group, and low-, medium-, and high-dose Cistanches Herba extract groups(62.5, 125, and 250 μg·mL~(-1)). The reactive oxygen species(ROS) content in each group was detected by flow cytometry, and the intracellular mitochondrial status was evaluated by transmission electron microscopy. The protein expression levels of hypoxia-inducible factor-1α(HIF-1α), BNIP3L, and Beclin-1 were detected by Western blot. Six effective constituents were screened out from Cistanches Herba. The core genes of Cistanches Herba in treating CRF were AKT1, IL-6, VEGFA, CASP3, JUN, EGFR, MYC, EGF, MAPK1, PTGS2, MMP9, IL-1B, FOS, and IL10, and the pathways related to CRF were AGE-RAGE and HIF-1α. Through GO enrichment analysis, it was found that the main biological functions involved were lipid peroxidation, nutrient deficiency, chemical stress, oxidative stress, oxygen content, and other biological processes. The results of the in vivo experiment showed that Cistanches Herba extract could significantly improve skeletal muscle atrophy in mice to relieve CRF. The in vitro experiment showed that Cistanches Herba extract could significantly reduce the content of intracellular ROS, the percentage of mitochondrial fragmentation, and the protein expression of Beclin-1 and increase the number of autophagosomes and the protein expression of HIF-1α and BNIP3L. Cistanches Herba showed a good anti-CRF effect, and its mechanism may be related to the key target proteins in the HIF-1α signaling pathway.


Asunto(s)
Animales , Ratones , Cistanche , Farmacología en Red , Beclina-1 , Especies Reactivas de Oxígeno , Extractos Vegetales , Medicamentos Herbarios Chinos/farmacología , Simulación del Acoplamiento Molecular , Medicina Tradicional China , Neoplasias/genética
2.
Zhongguo Zhong Yao Za Zhi ; 45(20): 4896-4901, 2020 Oct.
Artículo en Chino | MEDLINE | ID: mdl-33350262

RESUMEN

To investigate the transnasal absorption characteristics of Cistanche deserticola phenylethanol glycosides nanoemulsion and its influencing factors. With the use of the classic in vivo nasal circulation perfusion model in rats, the absorption rate constant was used as the index to compare the nasal absorption characteristics of C. deserticola phenylethanol glycosides nanoemulsion and its aqueous solution in different concentrations, and to explore the effects of pH value of the preparation and absorption accelerator Azone on the nasal absorption of C. deserticola phenylethanol glycosides nanoemulsion. The results showed that, as compared with the aqueous solution group, the absorption rate constant was significantly higher in C. deserticola phenylethanol glycosides nanoemulsion with the same concentration(P<0.05), and C. deserticola phenylethanol glycosides nanoemulsion was more easily absorbed by the nasal cavity of rats; with the increase of the concentration of C. deserticola phenylethanol glycosides, the transnasal absorption amount of nanoemulsion was also increased in a dose-dependent manner. When the pH value of nanoemulsion was 6.0 and the ratio of Azone was 2%, the absorption rate constant was highest and the effect of promoting infiltration was the best.


Asunto(s)
Cistanche , Alcohol Feniletílico , Animales , Glicósidos , Absorción Nasal , Extractos Vegetales , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA