Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Lett ; 553: 215971, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36257380

RESUMEN

Ovarian cancer (OC) is a malignant tumor that seriously threatens women's health. Due to the difficulty of early diagnosis, most patients exhibit advanced disease or peritoneal metastasis at diagnosis. We discovered that IFFO1 is a novel tumor suppressor, but its role in tumorigenesis, development and chemoresistance is unknown. In this study, IFFO1 levels were downregulated across cancers, leading to the acceleration of tumor development, metastasis and/or cisplatin resistance. Overexpression of IFFO1 inhibited the translocation of ß-catenin to the nucleus and decreased tumor metastasis and cisplatin resistance. Furthermore, we demonstrated that IFFO1 was regulated at both the transcriptional and posttranscriptional levels. At the transcriptional level, the recruitment of HDAC5 inhibited IFFO1 expression, which is mediated by the transcription factor YY1, and the METTL3/YTHDF2 axis regulated the mRNA stability of IFFO1 in an m6A-dependent manner. Mice injected with IFFO1-overexpressing cells had lower ascites volumes and tumor weights throughout the peritoneal cavity than those injected with parental cells expressing the vector control. In conclusion, we demonstrated that IFFO1 is a novel tumor suppressor that inhibits tumor metastasis and reverses drug resistance in ovarian cancer. IFFO1 was downregulated at both the transcriptional level and posttranscriptional level by histone deacetylase and RNA methylation, respectively, and the IFFO1 signaling pathway was identified as a potential therapeutic target for cancer.


Asunto(s)
Resistencia a Antineoplásicos , Proteínas de Filamentos Intermediarios , Metiltransferasas , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Adenosina/farmacología , Carcinogénesis , Cisplatino/farmacología , Regulación hacia Abajo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo
2.
Int J Nanomedicine ; 7: 3951-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22866004

RESUMEN

Ovarian cancer is one of the leading causes of cancer death for women throughout the Western world. Kaempferol, a natural flavonoid, has shown promise in the chemoprevention of ovarian cancer. A common concern about using dietary supplements for chemoprevention is their bioavailability. Nanoparticles have shown promise in increasing the bioavailability of some chemicals. Here we developed five different types of nanoparticles incorporating kaempferol and tested their efficacy in the inhibition of viability of cancerous and normal ovarian cells. We found that positively charged nanoparticle formulations did not lead to a significant reduction in cancer cell viability, whereas nonionic polymeric nanoparticles resulted in enhanced reduction of cancer cell viability. Among the nonionic polymeric nanoparticles, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nanoparticles incorporating kaempferol led to significant reduction in cell viability of both cancerous and normal cells. Poly(DL-lactic acid-co-glycolic acid) (PLGA) nanoparticles incorporating kaempferol resulted in enhanced reduction of cancer cell viability together with no significant reduction in cell viability of normal cells compared with kaempferol alone. Therefore, both PEO-PPO-PEO and PLGA nanoparticle formulations were effective in reducing cancer cell viability, while PLGA nanoparticles incorporating kaempferol had selective toxicity against cancer cells and normal cells. A PLGA nanoparticle formulation could be advantageous in the prevention and treatment of ovarian cancers. On the other hand, PEO-PPO-PEO nanoparticles incorporating kaempferol were more effective inhibitors of cancer cells, but they also significantly reduced the viability of normal cells. PEO-PPO-PEO nanoparticles incorporating kaempferol may be suitable as a cancer-targeting strategy, which could limit the effects of the nanoparticles on normal cells while retaining their potency against cancer cells. We have identified two nanoparticle formulations incorporating kaempferol that may lead to breakthroughs in cancer treatment. Both PEO-PPO-PEO and PLGA nanoparticle formulations had superior effects compared with kaempferol alone in reducing cancer cell viability.


Asunto(s)
Antineoplásicos/farmacología , Quempferoles/farmacología , Nanopartículas/química , Neoplasias Ováricas/tratamiento farmacológico , Antineoplásicos/química , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Femenino , Humanos , Quempferoles/química , Ácido Láctico/química , Ácido Láctico/farmacología , Neoplasias Ováricas/patología , Ovario/citología , Ovario/efectos de los fármacos , Tamaño de la Partícula , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Glicoles de Propileno/química , Glicoles de Propileno/farmacología
3.
J Biol Chem ; 281(25): 17359-17368, 2006 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-16618699

RESUMEN

Epidemiological data suggest that consumption of fruits and vegetables has been associated with a lower incidence of cancer. Cyanidin-3-glucoside (C3G), a compound found in blackberry and other food products, was shown to possess chemopreventive and chemotherapeutic activity in the present study. In cultured JB6 cells, C3G was able to scavenge ultraviolet B-induced *OH and O2-* radicals. In vivo studies indicated that C3G treatment decreased the number of non-malignant and malignant skin tumors per mouse induced by 12-O-tetradecanolyphorbol-13-acetate (TPA) in 7,12-dimethylbenz[a]anthracene-initiated mouse skin. Pretreatment of JB6 cells with C3G inhibited UVB- and TPA-induced transactivation of NF-kappaB and AP-1 and expression of cyclooxygenase-2 and tumor necrosis factor-alpha. These inhibitory effects appear to be mediated through the inhibition of MAPK activity. C3G also blocked TPA-induced neoplastic transformation in JB6 cells. In addition, C3G inhibited proliferation of a human lung carcinoma cell line, A549. Animal studies showed that C3G reduced the size of A549 tumor xenograft growth and significantly inhibited metastasis in nude mice. Mechanistic studies indicated that C3G inhibited migration and invasion of A549 tumor cells. These finding demonstrate for the first time that a purified compound of anthocyanin inhibits tumor promoter-induced carcinogenesis and tumor metastasis in vivo.


Asunto(s)
Antocianinas/fisiología , Antineoplásicos/farmacología , Extractos Vegetales/farmacología , Animales , Antocianinas/metabolismo , Anticarcinógenos/farmacología , Benzo(a)Antracenos , Carcinógenos , Línea Celular Tumoral , Frutas , Glucósidos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Metástasis de la Neoplasia , Neoplasias Cutáneas/inducido químicamente , Acetato de Tetradecanoilforbol , Activación Transcripcional , Rayos Ultravioleta , Cicatrización de Heridas
4.
Nutr Cancer ; 50(1): 80-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15572301

RESUMEN

Blackberries are natural rich sources of bioflavonoids and phenolic compounds that are commonly known as potential chemopreventive agents. Here, we investigated the effects of fresh blackberry extracts on proliferation of cancer cells and neoplastic transformation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), as well as the underlying mechanisms of signal transduction pathways. Using electron spin resonance, we found that blackberry extract is an effective scavenger of free radicals, including hydroxyl and superoxide radicals. Blackberry extract inhibited the proliferation of a human lung cancer cell line, A549. Pretreatment of A549 cells with blackberry extract resulted in an inhibition of 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation induced by ultraviolet B (UVB) irradiation. Blackberry extract decreased TPA-induced neoplastic transformation of JB6 P+ cells. Pretreatment of JB6 cells with blackberry extract resulted in the inhibition of both UVB- and TPA-induced AP-1 transactivation. Furthermore, blackberry extract also blocked UVB- or TPA-induced phosphorylation of ERKs and JNKs, but not p38 kinase. Overall, these results indicated that an extract from fresh blackberry may inhibit tumor promoter-induced carcinogenesis and associated cell signaling, and suggest that the chemopreventive effects of fresh blackberry may be through its antioxidant properties by blocking reactive oxygen species-mediated AP-1 and mitogen-activated protein kinase activation.


Asunto(s)
Antioxidantes/farmacología , Transformación Celular Neoplásica/efectos de los fármacos , Frutas/química , Extractos Vegetales/farmacología , Factor de Transcripción AP-1/antagonistas & inhibidores , División Celular/efectos de los fármacos , Línea Celular Tumoral , Espectroscopía de Resonancia por Spin del Electrón , Depuradores de Radicales Libres , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal , Acetato de Tetradecanoilforbol/toxicidad , Factor de Transcripción AP-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA