Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pain ; 165(8): 1824-1839, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452223

RESUMEN

ABSTRACT: Secreted microRNAs (miRNAs) have been detected in various body fluids including the cerebrospinal fluid, yet their direct role in regulating synaptic transmission remains uncertain. We found that intrathecal injection of low dose of let-7b (1 µg) induced short-term (<24 hours) mechanical allodynia and heat hyperalgesia, a response that is compromised in Tlr7-/- or Trpa1-/- mice. Ex vivo and in vivo calcium imaging in GCaMP6-report mice revealed increased calcium signal in spinal cord afferent terminals and doral root ganglion/dorsal root ganglia neurons following spinal perfusion and intraplantar injection of let-7b. Patch-clamp recordings also demonstrated enhanced excitatory synaptic transmission (miniature excitatory postsynaptic currents [EPSCs]) in spinal nociceptive neurons following let-7b perfusion or optogenetic activation of axonal terminals. The elevation in spinal calcium signaling and EPSCs was dependent on the presence of toll-like receptor-7 (TLR7) and transient receptor potential ion channel subtype A1 (TRPA1). In addition, endogenous let-7b is enriched in spinal cord synaptosome, and peripheral inflammation increased let-7b in doral root ganglion/dorsal root ganglia neurons, spinal cord tissue, and the cerebrospinal fluid. Notably, let-7b antagomir inhibited inflammatory pain and inflammation-induced synaptic plasticity (EPSC increase), suggesting an endogenous role of let-7b in regulating pain and synaptic transmission. Furthermore, intrathecal injection of let-7b, at a higher dose (10 µg), induced persistent mechanical allodynia for >2 weeks, which was abolished in Tlr7-/- mice. The high dose of let-7b also induced microgliosis in the spinal cord. Of interest, intrathecal minocycline only inhibited let-7b-induced mechanical allodynia in male but not female mice. Our findings indicate that the secreted microRNA let-7b has the capacity to provoke pain through both neuronal and glial signaling, thereby establishing miRNA as an emerging neuromodulator.


Asunto(s)
MicroARNs , Microglía , Médula Espinal , Transmisión Sináptica , Animales , Masculino , Ratones , Potenciales Postsinápticos Excitadores/fisiología , Ganglios Espinales/metabolismo , Hiperalgesia/fisiopatología , Hiperalgesia/metabolismo , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Nociceptores/metabolismo , Nociceptores/fisiología , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Transmisión Sináptica/fisiología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/genética , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/genética
2.
Nat Commun ; 12(1): 6208, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707084

RESUMEN

Inhibitory GABA-ergic neurotransmission is fundamental for the adult vertebrate central nervous system and requires low chloride concentration in neurons, maintained by KCC2, a neuroprotective ion transporter that extrudes intracellular neuronal chloride. To identify Kcc2 gene expression­enhancing compounds, we screened 1057 cell growth-regulating compounds in cultured primary cortical neurons. We identified kenpaullone (KP), which enhanced Kcc2/KCC2 expression and function in cultured rodent and human neurons by inhibiting GSK3ß. KP effectively reduced pathologic pain-like behavior in mouse models of nerve injury and bone cancer. In a nerve-injury pain model, KP restored Kcc2 expression and GABA-evoked chloride reversal potential in the spinal cord dorsal horn. Delta-catenin, a phosphorylation-target of GSK3ß in neurons, activated the Kcc2 promoter via KAISO transcription factor. Transient spinal over-expression of delta-catenin mimicked KP analgesia. Our findings of a newly repurposed compound and a novel, genetically-encoded mechanism that each enhance Kcc2 gene expression enable us to re-normalize disrupted inhibitory neurotransmission through genetic re-programming.


Asunto(s)
Analgésicos/uso terapéutico , Benzazepinas/uso terapéutico , Reposicionamiento de Medicamentos , Indoles/uso terapéutico , Transmisión Sináptica/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Analgésicos/farmacología , Animales , Benzazepinas/farmacología , Dolor en Cáncer/tratamiento farmacológico , Cateninas/genética , Cateninas/metabolismo , Células Cultivadas , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Humanos , Indoles/farmacología , Ratones , Neuralgia/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/patología , Simportadores/genética , Simportadores/metabolismo , Factores de Transcripción/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Catenina delta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA