Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110647

RESUMEN

Natural products have emerged as "rising stars" for treating viral diseases and useful chemical scaffolds for developing effective therapeutic agents. The nonstructural protein NS5B (RNA-dependent RNA polymerase) of NADL strain BVDV was used as the action target based on a molecular docking technique to screen herbal monomers for anti-BVDV viral activity. The in vivo and in vitro anti-BVDV virus activity studies screened the Chinese herbal monomers with significant anti-BVDV virus effects, and their antiviral mechanisms were initially explored. The molecular docking screening showed that daidzein, curcumin, artemisinine, and apigenin could interact with BVDV-NADL-NS5B with the best binding energy fraction. In vitro and in vivo tests demonstrated that none of the four herbal monomers significantly affected MDBK cell activity. Daidzein and apigenin affected BVDV virus replication mainly in the attachment and internalization phases, artemisinine mainly in the replication phase, and curcumin was active in the attachment, internalization, replication, and release phases. In vivo tests demonstrated that daidzein was the most effective in preventing and protecting BALB/C mice from BVDV infection, and artemisinine was the most effective in treating BVDV infection. This study lays the foundation for developing targeted Chinese pharmaceutical formulations against the BVDV virus.


Asunto(s)
Curcumina , Virus de la Diarrea Viral Bovina , Animales , Ratones , ARN Polimerasa Dependiente del ARN/metabolismo , Línea Celular , Simulación del Acoplamiento Molecular , Curcumina/farmacología , Curcumina/metabolismo , Apigenina/farmacología , Apigenina/metabolismo , Medicina Tradicional China , Ratones Endogámicos BALB C , Replicación Viral , Proteínas no Estructurales Virales/metabolismo , ARN Viral/metabolismo
2.
Biomed Res Int ; 2019: 5854315, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31467899

RESUMEN

Nature, a vast reservoir of pharmacologically active molecules, has been most promising source of drug leads for the cure of various pathological conditions. Formononetin is one of the bioactive isoflavones isolated from different plants mainly from Trifolium pratense, Glycine max, Sophora flavescens, Pycnanthus angolensis, and Astragalus membranaceus. Formononetin has been well-documented for its anti-inflammatory, anticancer, and antioxidant properties. Recently anticancer activity of formononetin is widely studied. This review aims to highlight the pharmacological potential of formononetin, thus providing an insight of its status in cancer therapeutics. Formononetin fights progression of cancer via inducing apoptosis, arresting cell cycle, and halting metastasis via targeting various pathways which are generally modulated in several cancers. Although reported data acclaims various biological properties of formononetin, further experimentation on mechanism of its action, medicinal chemistry studies, and preclinical investigations are surely needed to figure out full array of its pharmacological and biological potential.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Isoflavonas/farmacología , Neoplasias/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Isoflavonas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Glycine max/química , Trifolium/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA