Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomaterials ; 300: 122205, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348324

RESUMEN

The use of overwhelming reactive oxygen species (ROS) attack has shown great potential for treating aggressive malignancies; however, targeting this process for further applications is greatly hindered by inefficiency and low selectivity. Here, a novel strategy for ROS explosion induced by tumor microenvironment-initiated lipid redox cycling was proposed, which was developed by using soybean phosphatidylcholine (SPC) to encapsulate lactate oxidase (LOX) and sorafenib (SRF) self-assembled nanoparticles (NPs), named LOX/SRF@Lip. SPC is not only the delivery carrier but an unsaturated lipid supplement for ROS explosion. And LOX catalyzes excessive intratumoral lactate to promote the accumulation of large amounts of H2O2. Then, H2O2 reacts with excessive endogenous iron ions to generate amounts of hydroxyl radical for the initiation of SPC peroxidation. Once started, the reaction will proceed via propagation to form new lipid peroxides (LPO), resulting to devastating LPO explosion and widespread oxidative damage in tumor cells. Furthermore, SRF makes contribution to mass LPO accumulation by inhibiting LPO elimination. Compared to normal tissue, tumor tissue has higher levels of lactate and iron ions. Therefore, LOX/SRF@Lip shows low toxicity in normal tissues, but generates efficient inhibition on tumor proliferation and metastasis, enabling excellent and safe tumor-specific therapy. This work offers new ideas on how to magnify anticancer effect of ROS through rational nanosystem design and tumor-specific microenvironment utilization.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente Tumoral , Oxidación-Reducción , Peróxidos Lipídicos , Sorafenib , Hierro , Línea Celular Tumoral
2.
Adv Mater ; 33(27): e2100114, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34062021

RESUMEN

Chemodynamic therapy (CDT) employs Fenton catalysts to kill cancer cells by converting intracellular hydrogen peroxide (H2 O2 ) into hydroxyl radicals (OH•). Although many studies on H2 O2 supplementation have been conducted to improve the therapeutic effect of CDT, few studies have focused on the application of superoxide radical (O2 -• ) in CDT, which may result in better efficacy. A major concern about O2 -• -mediated CDT is its tendency to induce serious oxidative damage to normal tissues, which may be addressed by using a degradable O2 -• scavenger. Here, a harmless-harmful switchable and uninterrupted laccase (LAC)-instructed killer (HULK) is constructed, which is the first CDT agent accelerated by LAC-instructed O2 -• generation and possesses a harmless-harmful switchable effect because of the photodegradation of the O2 -• scavenger iron-chlorin e6 (FeCe6). LAC-instructed substrate oxidation effectively catalyzes O2 -• production with the help of intracellular reduction, thereby promoting the conversion of Fe3+ to Fe2+ , accelerating the generation of OH•, and inducing tumor cell apoptosis and necrosis. The introduced O2 -• scavenger FeCe6 is quickly photodegraded during irradiation, while LAC-instructed O2 -• generation proceeds as before, resulting in activatable CDT. This work not only provides the first strategy for LAC-instructed O2 -• generation but also presents new insight into activatable CDT.


Asunto(s)
Radical Hidroxilo , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno , Lacasa
3.
J Control Release ; 309: 82-93, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31344426

RESUMEN

Hypoxia is a potent tumor microenvironmental (TME) factor promoting immunosuppression and metastatic progression. For current anticancer therapeutic strategies, the combination of hypoxia alleviation and photodynamic therapy (PDT) might be a useful approach to further improve anticancer efficacy. In this study, we alleviated tumor hypoxia using a prolonged oxygen-generating phototherapy hydrogel (POP-Gel), which effectively elevated the oxygen level and shrank the hypoxic regions of tumors for up to 5 days evaluated by photoacoustic (PA) imaging and immunofluorescence staining, meeting the requirement of the "once injection, sustained treatment" strategy and significantly increasing PDT efficacy. The long-period improvement of the tumor hostile environment downregulated the expression of hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF), further preventing tumor growth and metastasis. More importantly, the enhanced PDT triggered a more intense immune response, improving the inhibition of triple negative breast cancer growth even tumor elimination. The POP-Gel may contribute useful insights into the combination of hypoxia alleviation and PDT.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Hidrogeles/uso terapéutico , Oxígeno/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/uso terapéutico , Hipoxia Tumoral/efectos de los fármacos , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clorofilidas , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fotoquimioterapia/métodos
4.
Int J Nanomedicine ; 12: 855-869, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28182160

RESUMEN

BACKGROUND: The natural compound curcumin (Cur) can regulate growth inhibition and apoptosis in various cancer cell lines, although its clinical applications are restricted by extreme water insolubility and instability. To overcome these hurdles, we fabricated a Cur-coordinated reactive oxygen species (ROS)-responsive nanoparticle using the interaction between boronic acid and Cur. MATERIALS AND METHODS: We synthesized a highly biocompatible 4-(hydroxymethyl) phenylboronic acid (HPBA)-modified poly(ethylene glycol) (PEG)-grafted poly(acrylic acid) polymer (PPH) and fabricated a Cur-coordinated ROS-responsive nanoparticle (denoted by PPHC) based on the interaction between boronic acid and Cur. The mean diameter of the Cur-coordinated PPHC nanoparticle was 163.8 nm and its zeta potential was -0.31 mV. The Cur-coordinated PPHC nanoparticle improved Cur stability in physiological environment and could timely release Cur in response to hydrogen peroxide (H2O2). PPHC nanoparticles demonstrated potent antiproliferative effect in vitro in A549 cancer cells. Furthermore, the viability of cells treated with PPHC nanoparticles was significantly increased in the presence of N-acetyl-cysteine (NAC), which blocks Cur release through ROS inhibition. Simultaneously, the ROS level measured in A549 cells after incubation with PPHC nanoparticles exhibited an obvious downregulation, which further proved that ROS depression indeed influenced the therapeutic effect of Cur in PPHC nanoparticles. Moreover, pretreatment with phosphate-buffered saline (PBS) significantly impaired the cytotoxic effect of Cur in A549 cells in vitro while causing less damage to the activity of Cur in PPHC nanoparticle. CONCLUSION: The Cur-coordinated nanoparticles developed in this study improved Cur stability, which could further release Cur in a ROS-dependent manner in cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Curcumina/farmacología , Sistemas de Liberación de Medicamentos , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Curcumina/química , Humanos , Peróxido de Hidrógeno/farmacología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Nanopartículas/química , Oxidantes/farmacología , Polímeros/química , Células Tumorales Cultivadas
5.
Nat Prod Commun ; 8(11): 1609-14, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24427953

RESUMEN

Broussonetia papyrifera (L.) Vent. and Lonicera japonica Thunb. have been used in recent medicinal research for their antioxidative and anti-inflammatory properties. The present study investigated the therapeutic efficacy of B. papyrifera and L. japonica ethanolic extracts in a murine model of ovalbumin-induced asthma, in which intra-peritoneal (IP) injections and aerosol ovalbumin delivery were used to induce allergic asthma. Bronchioalveolar lavage fluid (BALF), serum samples, lungs and livers were collected from the experimental groups. In the groups treated with B. papyrifera and L. japonica extracts, CD3, CD4, serum IgE and IL-4 levels; activities of matrix metalloproteinase (MMP)-2 and MMP-9; and eotaxin levels in the BALF significantly decreased to near normal levels. Results of a histopathological analysis showed that the level of inflammation and mucous secretions reduced in the treated groups compared to the corresponding levels in the other groups. Moreover, results of a serum enzymatic analysis showed the non-toxic nature of the extracts in the B. papyrifera and L. japonica treated groups. Taken together, these results clearly indicate that the B. papyrifera and L. japonica extracts may be very effective against asthma and inflammation related diseases.


Asunto(s)
Asma/tratamiento farmacológico , Broussonetia , Lonicera , Fitoterapia , Extractos Vegetales/uso terapéutico , Animales , Asma/inmunología , Modelos Animales de Enfermedad , Femenino , Interleucina-4/análisis , Activación de Linfocitos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/inmunología , Extractos Vegetales/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA