Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 124: 155323, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38194842

RESUMEN

BACKGROUND: Currently, there are no specific drugs or targets available for the treatment of tendinopathy. However, inflammation has recently been found to play a pivotal role in tendinopathy progression, thereby identifying it as a potential therapeutic target. Carpaine (CA) exhibits potential anti-inflammatory pharmacological properties and may offer a therapeutic option for tendinopathy. PURPOSE: This study aimed to investigate the effectiveness of CA in addressing tendinopathy and uncovering its underlying mechanisms. METHODS: Herein, the efficacy of CA by local administration in vivo in comparison to the first-line drug indomethacin was evaluated in a mouse collagenase-induced tendinopathy (CIT) model. Furthermore, IL-1ß induced a simulated pathological inflammatory microenvironment in tenocytes to investigate its underlying mechanisms in vitro. Further confirmation experiments were performed by overexpressing or knocking down the selective targets of CA in vivo. RESULTS: The findings demonstrated that CA was dose-dependent in treating tendinopathy and that the high-dose group outperformed the first-line drug indomethacin. Mechanistically, CA selectively bound to and enhanced the activity of the E3 ubiquitin ligase LRSAM1 in tendinopathy. This effect mediated the ubiquitination of p65 at lysine 93, subsequently promoting its proteasomal degradation. As a result, the NF-κB pathway was inactivated, leading to a reduction in inflammation of tendinopathy. Consequently, CA effectively mitigated the progression of tendinopathy. Moreover, the LRSAM1 overexpression demonstrated effectiveness in mitigating the tendinopathy progression and its knockdown abolished the therapeutic effects of CA. CONCLUSION: CA attenuates the progression of tendinopathy by promoting the ubiquitin-proteasomal degradation of p65 via increasing the enzyme activity of LRSAM1. The exploration of LRSAM1 has also unveiled a new potential target for treating tendinopathy based on the ubiquitin-proteasomal pathway.


Asunto(s)
Alcaloides , Tendinopatía , Ubiquitina-Proteína Ligasas , Animales , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Inflamación/metabolismo , Indometacina , Tendinopatía/tratamiento farmacológico
2.
Inflammation ; 42(2): 496-505, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30315524

RESUMEN

Sweroside (SW), as a bioactive herbal ingredient, has anti-inflammatory effects. Protective effects of SW on IL-1ß-stimulated articular chondrocytes, however, has not been fully understood. This study was to explore the anti-inflammatory effects and further to investigate the possible mechanism underlying SW effect on IL-1ß-stimulated rat articular chondrocytes. Rat articular chondrocytes were cultured with or without SW for 1 h, and then stimulated with IL-1ß for 24 h. ELISA analysis was used to measure the production of NO and PGE2. Western blot was to detect the expression of iNOS and COX-2. Furthermore, the mRNA expression of MMP-1, MMP3, MMP13, and ADAMTS-5 were measured by q-PCR. These results demonstrated that SW significantly inhibited IL-1ß-induced NO and PGE2 production, as well as MMP-1, MMP3, MMP13, and ADAMTS-5 mRNA expression. Moreover, SW also suppressed IL-1ß-induced NF-κB activation and iκ-B degradation, S6K1 and S6 phosphorylation. In conclusion, these results strongly demonstrated that the anti-inflammatory activity of SW is in part mediated by suppressing NF-κB and mTORC1 signaling, which was expected to be a promising drug target of osteoarthritis therapy.


Asunto(s)
Condrocitos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Interleucina-1beta/efectos adversos , Glucósidos Iridoides/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Cartílago Articular , Dinoprostona/biosíntesis , Inflamación/inducido químicamente , Glucósidos Iridoides/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/biosíntesis , Plantas Medicinales/química , Sustancias Protectoras/farmacología , Ratas
3.
J Healthc Eng ; 20172017.
Artículo en Inglés | MEDLINE | ID: mdl-29076702

RESUMEN

Bone fracture is a global healthcare issue for high rates of delayed healing and nonunions. Although n-3 polyunsaturated fatty acid (PUFA) is considered as a beneficial factor for bone metabolism, only few studies till date focused on the effects of n-3 PUFAs on fracture healing. In this study, we investigated the effect of endogenous n-3 PUFAs on fracture healing by measuring femur fracture repair in both fat-1 transgenic mice and WT mice. Proximal femoral fracture model was established in fat-1 transgenic mice and WT mice, respectively, and then the fracture was analyzed by using X-ray, micro-computed tomography (micro-CT), and histological assessment at 7, 14, 21, 28, and 35 days after fixation. The results showed that compared with WT mice, fat-1 mice exhibited acceleration in fracture healing through radiographic and histological analysis (18­21 days versus 21­28 days postfracture). Meanwhile, X-ray and micro-CT analysis that showed better remodeling callus formation were in the fat-1 group compared to WT group. Furthermore, histological analysis revealed that endogenous n-3 PUFAs promoted local endochondral ossification and accelerated the remodeling of calcified calluses after fracture. In conclusion, the present study indicated that endogenously produced n-3 PUFAs promote fracture healing process and accelerate bone remodeling in mice, and supplementation of n-3 PUFAs was positively associated with fracture healing.

4.
J Healthc Eng ; 2017: 3571267, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29065587

RESUMEN

Bone fracture is a global healthcare issue for high rates of delayed healing and nonunions. Although n-3 polyunsaturated fatty acid (PUFA) is considered as a beneficial factor for bone metabolism, only few studies till date focused on the effects of n-3 PUFAs on fracture healing. In this study, we investigated the effect of endogenous n-3 PUFAs on fracture healing by measuring femur fracture repair in both fat-1 transgenic mice and WT mice. Proximal femoral fracture model was established in fat-1 transgenic mice and WT mice, respectively, and then the fracture was analyzed by using X-ray, micro-computed tomography (micro-CT), and histological assessment at 7, 14, 21, 28, and 35 days after fixation. The results showed that compared with WT mice, fat-1 mice exhibited acceleration in fracture healing through radiographic and histological analysis (18-21 days versus 21-28 days postfracture). Meanwhile, X-ray and micro-CT analysis that showed better remodeling callus formation were in the fat-1 group compared to WT group. Furthermore, histological analysis revealed that endogenous n-3 PUFAs promoted local endochondral ossification and accelerated the remodeling of calcified calluses after fracture. In conclusion, the present study indicated that endogenously produced n-3 PUFAs promote fracture healing process and accelerate bone remodeling in mice, and supplementation of n-3 PUFAs was positively associated with fracture healing.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Fracturas del Fémur/diagnóstico por imagen , Curación de Fractura , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Organismos Libres de Patógenos Específicos , Tomografía Computarizada por Rayos X
5.
Cell Tissue Res ; 367(2): 257-267, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27844205

RESUMEN

Osteoporosis, which is a systemic skeletal disease characterized by low bone mineral density and microarchitectural deterioration of bone quality, is a global and increasing public health problem. Recent studies have suggested that Tenuigenin (TEN), a class of native compounds with numerous biological activities such as anti-resorptive properties, exerts protective effects against postmenopausal bone loss. The present study aims to investigate the osteogenic effects of TEN on bone mesenchymal stem cells (BMSCs) in vitro and in vivo. Alkaline phosphatase (ALP) activity/staining, Alizarin red staining and the expression of osteogenic markers, including runt-related transcription factor 2, osterix, osteocalcin, collagen Iα1, ß-catenin and glycogen synthase kinase-3ß were investigated in primary femoral BMSCs from C57/BL6 mice cultured under osteogenic conditions for 2 weeks to examine the effects of TEN. An ovariectomized (OVX) mouse model was used to investigate the effect of TEN treatment for 3 months in vivo. We found that ALP activity, mineralized nodules and the expression of osteogenic markers were increased and WNT/ß-catenin signaling was enhanced in vitro and in vivo. Bone parameters, including trabecular thickness, trabecular number and bone mineral density were higher in the OVX+TEN group than in control OVX mice. Our results suggest the therapeutic potential of TEN for the treatment of patients with postmenopausal osteoporosis.


Asunto(s)
Huesos/citología , Diferenciación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Resorción Ósea/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Medicamentos Herbarios Chinos/química , Femenino , Fémur/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Osteocalcina/genética , Osteocalcina/metabolismo , Ovariectomía , Factor de Transcripción Sp7 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA