Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 330: 118209, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38663779

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY: This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS: The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS: A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION: This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.


Asunto(s)
Aterosclerosis , Ácidos y Sales Biliares , Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares , Transducción de Señal , Animales , Ácidos y Sales Biliares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino , Medicamentos Herbarios Chinos/farmacología , Transducción de Señal/efectos de los fármacos , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Noqueados para ApoE , Ratas , Humanos
2.
Nutrients ; 15(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37764834

RESUMEN

Observational studies have investigated the impact of calcium homeostasis on psychiatric disorders; however, the causality of associations is yet to be established. Bidirectional Mendelian randomization (MR) analysis of calcium homeostasis hormones was conducted on nine psychiatric disorders. Calcium, serum 25-hydroxyvitamin D levels (25OHD), parathyroid hormone, and fibroblast growth factor 23 are the major calcium homeostasis hormones. The causality was evaluated by the inverse variance weighted method (IVW) and the MR Steiger test, while Cochran's Q test, the MR-Egger intercept test, funnel plot, and the leave-one-out method were used for sensitivity analyses. Bonferroni correction was used to determine the causative association features (p < 6.94 × 10-4). Schizophrenia (SCZ) was significantly associated with decreased 25OHD concentrations with an estimated effect of -0.0164 (Prandom-effect IVW = 2.39 × 10-7). In the Multivariable MR (MVMR) analysis adjusting for potentially confounding traits including body mass index, obesity, mineral supplements (calcium, fish oil, and vitamin D) and outdoor time (winter and summer), the relationship between SCZ and 25OHD remained. The genetically predicted autism spectrum disorder and bipolar disorder were also nominally associated with decreased 25OHD. This study provided evidence for a causal effect of psychiatric disorders on calcium homeostasis. The clinical monitoring of 25OHD levels in patients with psychiatric disorders is beneficial.


Asunto(s)
Trastorno del Espectro Autista , Conservadores de la Densidad Ósea , Trastornos Mentales , Humanos , Calcio , Análisis de la Aleatorización Mendeliana , Calcio de la Dieta , Hormonas , Homeostasis
3.
Front Pharmacol ; 14: 1243820, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637408

RESUMEN

Arthritis is a common degenerative disease of joints, which has become a public health problem affecting human health, but its pathogenesis is complex and cannot be eradicated. Coptis chinensis (CC) has a variety of active ingredients, is a natural antibacterial and anti-inflammatory drug. In which, berberine is its main effective ingredient, and has good therapeutic effects on rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA). RA, OA and GA are the three most common types of arthritis, but the relevant pathogenesis is not clear. Therefore, molecular mechanism and prevention and treatment of arthritis are the key issues to be paid attention to in clinical practice. In general, berberine, palmatine, coptisine, jatrorrhizine, magnoflorine and jatrorrhizine hydrochloride in CC play the role in treating arthritis by regulating Wnt1/ß-catenin and PI3K/AKT/mTOR signaling pathways. In this review, active ingredients, targets and mechanism of CC in the treatment of arthritis were expounded, and we have further explained the potential role of AHR, CAV1, CRP, CXCL2, IRF1, SPP1, and IL-17 signaling pathway in the treatment of arthritis, and to provide a new idea for the clinical treatment of arthritis by CC.

4.
J Ethnopharmacol ; 315: 116673, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37268257

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine theory believes that qi deficiency and blood stasis are the key pathogenesis of heart failure with preserved ejection fraction (HFpEF). As a representative prescription for replenishing qi and activating blood, QiShenYiQi dripping pills (QSYQ) has been used for treating heart diseases. However, the pharmacological mechanism of QSYQ in improving HFpEF is not well understood. AIM OF THE STUDY: The objective of the study is to investigate the cardioprotective effect and mechanism of QSYQ in HFpEF using the phenotypic dataset of HFpEF. MATERIALS AND METHODS: HFpEF mouse models established by feeding mice combined high-fat diet and Nω-nitro-L-arginine methyl ester drinking water were treated with QSYQ. To reveal causal genes, we performed a multi-omics study, including integrative analysis of transcriptomics, proteomics, and metabolomics data. Moreover, adeno-associated virus (AAV)-based PKG inhibition confirmed that QSYQ mediated myocardial remodeling through PKG. RESULTS: Computational systems pharmacological analysis based on human transcriptome data for HFpEF showed that QSYQ could potentially treat HFpEF through multiple signaling pathways. Subsequently, integrative analysis of transcriptome and proteome showed alterations in gene expression in HFpEF. QSYQ regulated genes involved in inflammation, energy metabolism, myocardial hypertrophy, myocardial fibrosis, and cGMP-PKG signaling pathway, confirming its function in the pathogenesis of HFpEF. Metabolomics analysis revealed fatty acid metabolism as the main mechanism by which QSYQ regulates HFpEF myocardial energy metabolism. Importantly, we found that the myocardial protective effect of QSYQ on HFpEF mice was attenuated after RNA interference-mediated knock-down of myocardial PKG. CONCLUSION: This study provides mechanistic insights into the pathogenesis of HFpEF and molecular mechanisms of QSYQ in HFpEF. We also identified the regulatory role of PKG in myocardial stiffness, making it an ideal therapeutic target for myocardial remodeling.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Ratones , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico , Multiómica , Miocardio/patología
5.
Mol Omics ; 19(1): 72-83, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36416788

RESUMEN

Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease. Lamiophlomis rotata (L. rotata) (Benth.) Kudo, an essential medicinal plant in traditional Tibetan medicine, is useful in treating RA. The purpose of this study was to evaluate L. rotata's anti-RA effect and to analyze its serum metabolites and lipids to predict the possible action pathways. Female and male rats were immunized with CFA to induce arthritis. Paw volumes were measured, and arthritis index analysis and histological analysis were performed to check the effects of L. rotata. ELISA was used to measure the levels of inflammatory cytokines (IL-1ß, TNF-α, IL-6, and IL-10) and oxidative stress (MDA, SOD, GSH, and CAT). UPLC/Q-Orbitrap-MS was used to identify untargeted metabolites and lipids in serum. Metabolite validation was performed using UPLC/QQQ-MS. L. rotata application significantly reduced arthritis indices and paw swelling in AIA rats, and diminished inflammation and bone fractures in joint tissues. Sphingolipid (SP) and steroid hormone biosynthesis was found to be closely related to L. rotata's intervention in RA. In addition, our experiments also confirmed that females were more likely than males to develop RA. These findings provide clues and a scientific basis for the mechanism of L. rotata in treating RA.


Asunto(s)
Artritis Reumatoide , Esfingolípidos , Masculino , Femenino , Ratas , Animales , Artritis Reumatoide/tratamiento farmacológico , Citocinas/metabolismo , Esteroides , Hormonas
6.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6396-6402, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38211996

RESUMEN

A quantitative proton nuclear magnetic resonance(qHNMR) method was established to determine the glucose content in commercially available Massa Medicata Fermentata(MMF) products and explore the variations of glucose content in MMF products during processing. The qHNMR spectrum of MMF in deuterium oxide was obtained with 2,2,3,3-d_4-3-(trimethylsilyl) propionate sodium salt as the internal standard substance. With the doublet peaks of terminal hydrogen of glucose with chemical shift at δ 4.65 and δ 5.24 as quantitative peaks, the content of glucose in MMF samples was determined. The glucose content showed a good linear relationship within the range of 0.10-6.44 mg·mL~(-1). The relative standard deviations(RSDs) of precision, stability, repeatability, and recovery for determination were all less than 2.3%. The glucose content varied in different commercially available MMF samples, which were associated with the different fermentation days, wheat bran-to-flour ratios, and processing methods. The glucose content in MMF first increased and then decreased over the fermentation time. Compared with the MMF products fermented with wheat bran or flour alone, the products fermented with both wheat bran and flour had increased glucose. The glucose content of bran-fried MMF was slightly lower than that of raw MMF, while the glucose content in charred MMF was extremely low. In conclusion, the qHNMR method established in this study is simple, fast, and accurate, serving as a new method for determining the glucose content in MMF. Furthermore, this study clarifies the variations of glucose content in MMF during processing, which can not only indicate the processing degree but also provide a scientific basis for revealing the fermentation mechanism and improving the quality control of MMF.


Asunto(s)
Medicamentos Herbarios Chinos , Protones , Medicamentos Herbarios Chinos/química , Fibras de la Dieta , Espectroscopía de Resonancia Magnética
7.
Front Pharmacol ; 13: 983428, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160458

RESUMEN

Alismatis rhizoma is a traditional Chinese medicine. Studies have demonstrated that Alismatis rhizoma also has therapeutic effects on metabolic syndrome. However, the pharmacodynamic material basis and mechanism are still unclear. First, UHPLC/Q-Orbitrap MS was used to detect the chemical components of the Alismatis rhizoma extract, and 31 triterpenoids and 2 sesquiterpenes were preliminarily identified. Then, to investigate the mechanism of the Alismatis rhizoma extract on metabolic syndrome, a mouse model of metabolic syndrome induced by high-fructose drinks was established. The results of serum biochemical analysis showed that the levels of TG, TC, LDL-C, and UA after the Alismatis rhizoma extract treatment were markedly decreased. 1H-NMR was used to conduct non-targeted metabolomics studies. A total of 20 differential metabolites were associated with high-fructose-induced metabolic syndrome, which were mainly correlated with 11 metabolic pathways. Moreover, UHPLC/Q-Orbitrap MS lipidomics analysis found that a total of 53 differential lipids were screened out. The results showed that Alismatis rhizoma extract mainly reduces the synthesis of glycerophospholipid and ceramide and improves the secretion of bile acid. This study shows that the Alismatis rhizoma extract can treat metabolic syndrome mainly by inhibiting energy metabolism, amino acid metabolism, and regulating bile acid to reduce phospholipid content.

8.
Front Pharmacol ; 13: 850777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928270

RESUMEN

Tyrosol (T), hydroxytyrosol (H), and salidroside (S) are typical phenylethanoids and also powerful dietary antioxidants. This study aimed at evaluating the influence of three natural phenylethanoids, which are dietary phenylethanoids of natural origins, on reversing gut dysbiosis and attenuating nonalcoholic fatty liver features of the liver induced by metabolic syndrome (MetS) mice. C57BL/6J female mice induced with high-fructose diet were established and administrated with salidroside, tyrosol, and hydroxytyrosol for 12 weeks, respectively. Biochemical analysis showed that S, T, and H significantly improved glucose metabolism and lipid metabolism, including reduced levels of total cholesterol insulin (INS), uric acid, low-density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (ALT). Histopathological observation of the liver confirmed the protective effects of S, T, and H against hepatic steatosis, which were demonstrated by the results of metabolomic analysis, such as the improvement in glycolysis, purine metabolism, bile acid, fatty acid metabolism, and choline metabolism. Additionally, 16S rRNA gene sequence data revealed that S, T, and H could enhance the diversity of gut microbiota. These findings suggested that S, T, and H probably suppress lipid accumulation and have hepatoprotective effects and improve intestinal microflora disorders to attenuate metabolic syndromes.

9.
Food Addit Contam Part B Surveill ; 15(4): 275-282, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35854473

RESUMEN

Aflatoxins have been detected as contaminants of oil crops before harvesting and drying, during storage and manufacturing and could be transferable to plant oils. There are more than 20 different types of aflatoxins, among which the most commonly occurring are the B1, B2, G1 and G2. Concentrations of these four aflatoxins were determined in plant oils from retail shops in China and in crude peanut oil extracted from culled mouldy peanuts by HPLC with fluorescence detection. Overall, aflatoxins were present in 25 of the 63 samples. The four aflatoxins co-existed in vegetable oil, but the content of AFB1 was usually higher than the other aflatoxins. Particularly in the case of highly contaminated oil samples, AFB1 accounted for 68% of the total aflatoxins. According to the health risk assessment, the low margin of exposure values from AFB1 in oils suggests a high level of concern for children.


Asunto(s)
Aflatoxinas , Humanos , Niño , Aflatoxinas/análisis , Aflatoxina B1/análisis , Contaminación de Alimentos/análisis , Aceite de Cacahuete , Arachis , Aceites de Plantas/análisis , Cromatografía Líquida de Alta Presión
10.
Phytochem Anal ; 33(7): 1068-1085, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35778370

RESUMEN

INTRODUCTION: Alkaloids exist in various herbal medicine widely and exhibit diverse biological and pharmacological activities. p-Sulphonatocalix[6]arenes (SC6A) and p-sulphonatocalix[8]arenes (SC8A) are water-soluble supramolecular macrocycles and are applied to the extraction of alkaloids from herbal products. OBJECTIVE: In this study, an innovative method of SC6A/SC8A assisted extraction of the alkaloids from herbs was established. METHODS: SC6A and SC8A were designed to extract 27 alkaloids from seven herbal medicines. Based on the significant solubilisation and extraction effect, Stephaniae Tetrandrae Radix (Fangji, FJ) was selected to obtain the optimal extraction process by adopting single factor test and orthogonal experiment. Then, the alkaloids and SC6A/SC8A were separated by one-step alkalisation and SCnA were reused. The host-guest complexes between alkaloids and SCnA were determined by competitive fluorescence titration, differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1 H-NMR) analysis. RESULTS: The optimum condition for SC6A assisted extraction was 5:1:80 (g/g/mL) for herbs/SC6A/solution ratio, 355-250 µm particle size and ultrasonicate 0.5 h, whilst 10:1:40 (g/g/mL) for herbs/SC8A/solution ratio, 355-250 µm particle size and ultrasonicate 0.5 h for SC8A assisted extraction. The total yield of alkaloids (fangchinoline and tetrandrine) from FJ was increased by 4.87 times and 5.97 times with SC6A and SC8A. Moreover, a good reusability of SC6A/SC8A was achieved by alkalisation dissociation. Host-guest complexes were determined by competitive fluorescence titration at a molar ratio of 1:1 between most alkaloids (25/27, except evodiamine and rutaecarpine) and SC6A/SC8A. The complex structure was proved by DSC, FTIR and 1 H-NMR analysis. CONCLUSION: The study provided an effective eco-friendly and energy-saving extraction method of alkaloids from herbal medicine.


Asunto(s)
Alcaloides , Medicamentos Herbarios Chinos , Plantas Medicinales , Alcaloides/química , Medicamentos Herbarios Chinos/química , Medicina de Hierbas , Plantas Medicinales/química , Protones , Agua
11.
Front Pharmacol ; 12: 671708, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326769

RESUMEN

Metabolic syndrome (MetS) is a pathological state of many abnormal metabolic sections. These abnormalities are closely related to diabetes, heart pathologies and other vascular diseases. Danggui-Shaoyao-San (DSS) is a traditional Chinese medicine formula that has been used as a therapy for Alzheimer's disease. DSS has rarely been reported in the application of MetS and its mechanism of how it improves gut microbia dysbiosis and hepatic lipid homeostasis. In this study, three extracts of DSS were obtained using water, 50% methanol in water and methanol as extracting solvents. Their chemical substances were analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass (UPLC-Q/TOF-MS). Pharmacodynamic effect of the extracts were evaluated by comparison of biochemical factors, 16S rRNA sequencing test for gut microbiota analysis, as well as metabonomic and transcriptomic assessments on liver tissues from fructose-fed rats. This study aimed at investigating DSS's mechanism of regulating blood lipid, anti-inflammation and reducing blood glucose. The results showed that the 50% methanol extract (HME) was more effective. It was worth noting that hydroxysteroid 17ß-dehydrogenase 13 (HSD17ß13) as a critical element of increasing blood lipid biomarker-triglyceride (TG), was decreased markedly by DSS. The influence from upgraded hydroxysteroid 17ß-dehydrogenase 7 (HSD17ß7) may be stronger than that from downgraded Lactobacillus in the aspect of regulating back blood lipid biomarker-total cholesterol (TC). The differential down-regulation of tumornecrosis factor alpha (TNF-α) and the significant up-regulation of Akkermansia showed the effective effect of anti-inflammation by DSS. The declining glycine and alanine induced the lowering glucose and lactate. It demonstrated that DSS slowed down the reaction of gluconeogenesis to reduce the blood glucose. The results demonstrated that DSS improved pathological symptoms of MetS and some special biochemical factors in three aspects by better regulating intestinal floras and improving hepatic gene expressions and metabolites.

12.
Phytochem Anal ; 32(6): 1141-1151, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33949013

RESUMEN

INTRODUCTION: With the wide application of Scutellaria barbata D. Don for hepatitis and mastitis, its quality control issues have also received increasing attention. Based on the multi-component and multi-target characteristics of traditional Chinese medicine, there is an urgent need to establish a quality evaluation system. OBJECTIVES: This study intends to integrate the "quality-activity-quantification" strategy and establish an activity-related quality control method to ensure the safety and effectiveness of S. barbata. MATERIAL AND METHODS: Ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) was used to characterize the chemical components of S. barbata, and network pharmacological analysis was carried out on the identified components. The index components were determined on the basis of comprehensive activity prediction results and content information. At the same time, the contents of 16 batches of S. barbata from different origins were determined. RESULTS: A total of 94 compounds were identified according to mass spectrometric data, 12 of which were isolated and structure-confirmed by nuclear magnetic resonance technology. Network pharmacological analysis was applied to predict their key targets and the major pathways mediating their anti-inflammatory effects. On the basis of comprehensive activity prediction and content information, five components were chosen as crucial quality indicators of S. barbata, including scutellarin, scutellarein, luteolin, apigenin, and hispidulin. CONCLUSION: In this study, 16 different S. barbata batches were compared, and five quality indicators were determined on the basis of qualitative and activity results. The present study provides useful information for evaluating the quality of S. barbata in different areas, and also provides a new basis for the development of quality evaluation methods.


Asunto(s)
Scutellaria , Antiinflamatorios/farmacología , Cromatografía Líquida de Alta Presión , Extractos Vegetales , Control de Calidad
13.
Int J Biol Sci ; 16(16): 3133-3148, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162820

RESUMEN

Cardiac metabolic remodeling is recognized as an important hallmark of heart failure (HF), while strategies that target energy metabolism have therapeutic potential in treating HF. Shen-Fu formula (S-F) is a standardized herbal preparation frequently used in clinical practice and is a promising combinatorial therapy for HF-related metabolic remodeling. Herein, we performed an untargeted multi-omics analysis using transcriptomics, proteomics, and metabolomics on HF mice induced by transverse aortic constriction (TAC). Integrated and pathway-driven analyses were used to reveal the therapeutic targets associated with S-F treatment. The cardioprotective effect and potential mechanism of S-F were verified by the results from echocardiography, hemodynamics, histopathology, and biochemical assays. As a result, S-F significantly alleviated myocardial fibrosis and hypertrophy, thus reducing the loss of heart function during adverse cardiac remodeling in TAC mice. Integrated omics analysis showed that S-F synergistically mediated the metabolic flexibility of fatty acids and glucose in cardiac energy metabolism. These effects of S-F were confirmed by the activation of AMP-activated protein kinase (AMPK) and its downstream targets in the failing heart. Collectively, our results demonstrated that S-F suppressed cardiac metabolic remodeling through activating AMPK-related pathways via energy-dependent mechanisms.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Metabolismo Energético , Insuficiencia Cardíaca/terapia , Remodelación Ventricular , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Ecocardiografía , Ácidos Grasos/metabolismo , Fibrosis , Glucosa/metabolismo , Insuficiencia Cardíaca/metabolismo , Hemodinámica , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Miocardio/patología , Proteoma , Transcriptoma
14.
Front Chem ; 8: 363, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426329

RESUMEN

Plants from Alisma species belong to the genus of Alisma Linn. in Alismataceae family. The tubers of A. orientale (Sam.) Juzep, also known as Ze Xie in Chinese and Takusha in Japanese, have been used in traditional medicine for a long history. Triterpenoids are the main secondary metabolites isolated from Alisma species, and reported with various bioactive properties, including anticancer, lipid-regulating, anti-inflammatory, antibacterial, antiviral and diuretic activities. In this brief review, we aimed to summarize the phytochemical and pharmacological characteristics of triterpenoids found in Alisma, and discuss their structure modification to enhance cytotoxicity as well.

15.
Pharmacol Res ; 153: 104654, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31945473

RESUMEN

Metabolic syndrome, such as diabetes mellitus, obesity, atherosclerosis, and high blood pressure (HBP), are closely linked pathophysiologically. However, current monotherapies for metabolic syndrome fail to target the multifactorial pathology via multiple mechanisms, as well as resolving the dysfunctionality of the cells and organs of the body. We aimed to provide a comprehensive and up-to-date review of the pharmacological advances, therapeutic potential, and phytochemistry of Salvia miltiorrhiza, Carthamus tinctorius, and Danhong injection (DHI). We discussed the molecular mechanisms of the bioactive constituents relating to diabetes mellitus and metabolic disease for further research and drug development. Interestingly, Salvia miltiorrhiza, Carthamus tinctorius, and DHI have anti-inflammatory, anti-glycemic, anti-thrombotic, and anti-cancer properties; and they mainly act by targeting the dysfunctional vasculatures including the inflammatory components of the disease to provide vascular repair as well as resolving oxidative stress. The major bioactive chemical constituents of these plants include polyphenolic acids, diterpene compounds, carthamin, and hydroxysafflor yellow A. Treatment of diabetes mellitus and its associated cardiovascular complication requires a comprehensive approach involving the use of appropriate traditional Chinese medicine formula. Danshen, Honghua, and DHI target the multiple risk factors regulating the physiologic function of the body and restore normalcy, apart from the traditional advice on exercise and diet control as treatment options in a metabolic syndrome patient.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Carthamus tinctorius/química , Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Preparaciones de Plantas/uso terapéutico , Salvia miltiorrhiza/química , Presión Sanguínea/efectos de los fármacos , Quimioterapia Combinada , Endotelio Vascular/efectos de los fármacos , Humanos , Hipoglucemiantes/aislamiento & purificación , Preparaciones de Plantas/aislamiento & purificación
16.
Phytomedicine ; 69: 152690, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30389273

RESUMEN

BACKGROUND: Rhodioloside is a glucoside of tyrosol isolated from Rhodiola rosea. However, its regulating effect on hepatic dyslipidemia of atherogenic mice has rarely been studied. PURPOSE: The specific aims of current study included to clarify lipidomic perturbation in liver tissues of apolipoprotein E deficient (apoE-/-) mice fed with high-fat diet, and to examine the effects of rhodioloside against atherosclerosis and dyslipidemia. STUDY DESIGN: The comparisons of hepatic lipidome were executed between wide type (WT) mice fed with normal diet (NDC) and apoE-/- mice fed with high-fat diet (Model), WT mice fed with high-fat diet (HFDC) versus the model mice, as well as the model mice versus rhodioloside-treated atherosclerotic mice. METHODS: Ultra high performance liquid chromatography coupled with a Q exactive hybrid quadrupole-orbitrap mass spectrometry (UPLC-MS/MS) was employed to provide an unbiased and simultaneous measurement of individual lipid species in liver tissues. RESULTS: Multivariate statistical analysis derived from LC-MS spectra revealed that high-fat diet and apoE deficiency caused a series of disturbances on glyerolipid metabolism, glycerophospholipid metabolism and sphingolipid metabolism. Rhodioloside administration showed atheroprotective effects on the apoE-/- mice with regulating the levels of 1 phosphatidylcholine, 2 phosphatidylserines, 5 alkyldiacylglycerols and 3 alkenyldiacylglycerols back to normal. In particular, PC (4:0/15:0) was positively associated with high-density lipoprotein cholesterol in blood, both of which could be ameliorated by rhodioloside. CONCLUSION: Our results identified the abnormal hepatic lipids in atherosclerosis progression that could efficiently improved by rhodioloside. These lipids contributed to biological understanding of atherogenic dyslipidemia in liver and could also served as sensitive indicators for drug target screening.


Asunto(s)
Apolipoproteínas E/genética , Dieta Alta en Grasa/efectos adversos , Dislipidemias/tratamiento farmacológico , Glucósidos/farmacología , Hígado/efectos de los fármacos , Fenoles/farmacología , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/patología , Cromatografía Liquida , Dislipidemias/genética , Dislipidemias/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , Espectrometría de Masas en Tándem
17.
Metabolites ; 9(11)2019 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-31684074

RESUMEN

:Pre-clinical safety evaluation of traditional medicines is imperative because of the universality of drug-induced adverse reactions. Psoralen and isopsoralen are the major active molecules and quality-control components of a traditional herbal medicine which is popularly used in Asia, Fructus Psoraleae. The purpose of this study is to assess the long-term effects of psoralen and isopsoralen with low levels on the biochemical parameters and metabolic profiles of rats. Three doses (14, 28, and 56 mg/kg) of psoralen and one dose (28 mg/kg) of isopsoralen were administered to rats over 12 weeks. Blood and selected tissue samples were collected and analyzed for hematology, serum biochemistry, and histopathology. Metabolic changes in serum samples were detected via proton nuclear magnetic resonance (1H-NMR) spectroscopy. We found that psoralen significantly changed the visceral coefficients, blood biochemical parameters, and histopathology, and isopsoralen extra influenced the hematological index. Moreover, psoralen induced remarkable elevations of forvaline, isoleucine, isobutyrate, alanine, acetone, pyruvate, glutamine, citrate, unsaturated lipids, choline, creatine, phenylalanine, and 4-hydroxybenzoate, and significant reductions of ethanol and dimethyl sulfone. Isopsoralen only induced a few remarkable changes of metabolites. These results suggest that chronic exposure to low-level of psoralen causes a disturbance in alanine metabolism, glutamate metabolism, urea cycle, glucose-alanine cycle, ammonia recycling, glycine, and serine metabolism pathways. Psoralen and isopsoralen showed different toxicity characteristics to the rats.

18.
Oxid Med Cell Longev ; 2019: 9137654, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341538

RESUMEN

Astragaloside IV is one of the main active ingredients isolated from Astragalus membranaceus. Here we confirmed its protective effect against cardiac ischemia-reperfusion (I/R) injury and aimed to investigate the potential molecular mechanisms involved. Pretreatment of ex vivo and in vivo I/R-induced rat models by astragaloside IV significantly prevented the ratio of myocardium infarct size, systolic and diastolic dysfunction, and the production of creatine kinase and lactate dehydrogenase. Metabolic analyses showed that I/R injury caused a notable reduction of succinate and elevation of lysophospholipids, indicating excessive reactive oxygen species (ROS) generation driven by succinate's rapid reoxidization and glycerophospholipid degradation. Molecular validation mechanistically revealed that astragaloside IV stimulated nuclear factor (erythroid-derived 2)-like 2 (Nrf2) released from Kelch-like ECH-associated protein 1 (Keap1) and translocated to the nucleus to combine with musculoaponeurotic fibrosarcoma (Maf) to initiate the transcription of antioxidative gene heme oxygenase-1 (HO-1), which performed a wide range of ROS scavenging processes against pathological oxidative stress in the hearts. As expected, increasing succinate and decreasing lysophospholipid levels were observed in the astragaloside IV-pretreated group compared with the I/R model group. These results suggested that astragaloside IV ameliorated myocardial I/R injury by modulating succinate and lysophospholipid metabolism and scavenging ROS via the Nrf2 signal pathway.


Asunto(s)
Lisofosfolípidos/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Saponinas/uso terapéutico , Triterpenos/uso terapéutico , Animales , Lisofosfolípidos/farmacología , Masculino , Estrés Oxidativo , Ratas , Especies Reactivas de Oxígeno , Saponinas/farmacología , Ácido Succínico , Triterpenos/farmacología
19.
Phytomedicine ; 57: 352-363, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30831484

RESUMEN

BACKGROUND: Nerigoside (NG), a cardenolide isolated from a commonfolk medicine, Nerium oleander Linn. (Apocynaceae), has not been explored for its biological effects. To date, cardenolides have received considerable attention in pharmacology studies due to their direct effects of apoptosis-induction or growth-inhibitory against tumor in vitro and in vivo. Whether and how NG exerts anticancer effects against colorectal cancer remains to be elucidated. PURPOSE: The aim of this study was to investigate the anticancer effect of NG in human colorectal cancer cells. METHODS: To test anticancer effect, we compared potency of NG in two colorectal cancer cell lines, HT29 and SW620 by WST-1 and colony proliferation assays. And we investigated mechanism of anticancer activities by analyzing players in apoptotic and ERK/GSK3ß/ß-catenin signaling pathways in HT29 and SW620 cells treated with NG. RESULTS: In this study, we showed that NG markedly suppressed the cell viability and colony formation of colorectal cancer cells HT29 and SW620, with no significant toxic effect on non-cancer cells NCM460. Annexin V-FITC/PI and CFSE labeling results revealed that NG suppressed cell proliferation in low concentration, along with reducing expression of PCNA, while NG induced apoptosis in high concentration,. Meanwhile, NG significantly arrested cell migration by reversal of EMT and cell cycle on G2/M. Then, we found that the ERK and GSK3ß/ß-catenin signaling pathway were noticeably blocked in CRC cells after treatment with NG. According to western blot, NG upregulated the expression of p-GSK3ß/GSK3ß and decreased especially the expression of ß-catenin in nuclear. In addition, Wnt signaling and its target genes were suppressed in response to NG. Then, the Ser9 phosphorylation of GSK3ß can be reduced / raised by GÖ 6983 / LiCl, respectively. Thus, we further confirmed that the GSK3ß/ß-catenin axis is involved in NG-prevented cell proliferation. CONCLUSION: NG inhibited the growth of colorectal cancer cells by suppressing ERK/GSK3ß/ß-catenin signaling pathway. And the GSK3ß/ß-catenin axis is involved in preventing cell proliferation and migration by NG-treatment. These results suggest that NG may be used to treat colorectal cancer, with better outcome by combining with GSK3ß inhibitor to block Wnt pathway.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , beta Catenina/metabolismo , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Células HT29 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Nerium/química , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , beta Catenina/antagonistas & inhibidores
20.
J Pharm Biomed Anal ; 160: 323-329, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30114610

RESUMEN

The public concern and increasing awareness of herbal medicines calls for methods available to assure quality and authenticity. In the present study, a novel strategy combing 1H nuclear magnetic resonance (1H NMR) spectral analyses coupled with chemometrics was developed and validated to allow comprehensive analysis and rapid authentication of herbal medicines. Polygoni Multiflori Radix, a widely used herbal medicine and a kind of popular functional food, was taken as an example. Characteristic profiling of 1H NMR fingerprints was achieved by genetic algorithm and a counter-propagation artificial neural network. Multivariate classification methods were employed to evaluate and validate the performance of the developed characteristic profiling of 1H NMR fingerprints. The results well showed that the proposed method improved the predictive ability of the PLS-DA, and presented equivalent performance to the original spectrum in other classification methods. In conclusion, the developed method is an accurate, sensitive and rapid authentication of Polygoni Multiflori Radix, which could be a useful tool for rapid authentication and quality control of herbal medicines.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Fitoquímicos/análisis , Polygonum/química , Análisis de los Mínimos Cuadrados , Plantas Medicinales/química , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA