Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nutr Biochem ; 123: 109486, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37844765

RESUMEN

Environmental factors, particularly dietary habits, play an important role in cardiovascular disease susceptibility and progression through epigenetic modification. Previous studies have shown that hyperplastic vascular intima after endarterectomy is characterized by genome-wide hypomethylation. The purpose of this study was to investigate whether methyl donor diet affects intimal hyperplasia and the possible mechanisms involved. Intimal hyperplasia was induced in SD rats by carotid artery balloon injury. From 8 d before surgery to 28 d after surgery, the animals were fed a normal diet (ND) or a methyl donor diet (MD) supplemented with folic acid, vitamin B12, choline, betaine, and zinc. Carotid artery intimal hyperplasia was observed by histology, the effect of MD on carotid protein expression was analyzed by proteomics, functional clustering, signaling pathway, and upstream-downstream relationship of differentially expressed proteins were analyzed by bioinformatics. Results showed that MD attenuated balloon injury-induced intimal hyperplasia in rat carotid arteries. Proteomic analysis showed that there were many differentially expressed proteins in the common carotid arteries of rats fed with two different diets. The differentially expressed proteins are mainly related to the composition and function of the extracellular matrix (EMC), and changes in the EMC can lead to vascular remodeling by affecting fibrosis and stiffness of the blood vessel wall. Changes in the levels of vasculotropic proteins such as S100A9, ILF3, Serpinh1, Fbln5, LOX, HSPG2, and Fmod may be the reason why MD attenuates intimal hyperplasia. Supplementation with methyl donor nutrients may be a beneficial measure to prevent pathological vascular remodeling after injury.


Asunto(s)
Traumatismos de las Arterias Carótidas , Lesiones del Sistema Vascular , Ratas , Animales , Hiperplasia , Ratas Sprague-Dawley , Proteómica , Remodelación Vascular , Dieta , Traumatismos de las Arterias Carótidas/metabolismo
2.
Int Immunopharmacol ; 124(Pt B): 110993, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37776772

RESUMEN

Selenium (Se) is an essential trace element that plays an important role in thyroid physiology. Se supplementation can reduce levels of autoimmune thyroid antibodies, which may be beneficial in Hashimoto's thyroiditis (HT). However, the long-term benefits of Se supplementation for HT patients are controversial and there is no clear clinical evidence to support it, so further basic and clinical research is needed. The effect of Se on immune cells, especially T cells, in autoimmune thyroiditis (AIT) has not been elucidated. Here, we replicated a mouse model of experimental autoimmune thyroiditis (EAT) on a high-iodine diet and treated it with Se supplementation. At week 8 of the experiment, Se supplementation reduced the destruction of thyroid follicles and the infiltration rate of lymphocytes in EAT mice, and reversed the disturbance of peripheral blood thyroxine and thyroid autoantibody levels. Further examination revealed that Se had broad effects on T-cell subsets. Its effects include reducing the production of pro-inflammatory cytokines by Th1 cells, inhibiting the differentiation and production of cytokines by Th2 and Th17 cells, and upregulating the differentiation and production of cytokines by Treg cells. These changes help alleviate thyroid follicle damage during EAT. In conclusion, selenium supplementation has the potential to improve the prognosis of AIT by altering the subset differentiation and/or function of CD4+ T cells.


Asunto(s)
Enfermedad de Hashimoto , Selenio , Tiroiditis Autoinmune , Humanos , Ratones , Animales , Selenio/uso terapéutico , Autoanticuerpos , Diferenciación Celular , Citocinas
3.
J Periodontal Res ; 58(3): 668-678, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36807238

RESUMEN

BACKGROUND AND OBJECTIVE: Periodontal ligament stem cells (PDLSCs) are derived from the periodontal ligament and have the characteristics of pluripotent differentiation, including osteogenesis, and are one of the important seed cells in oral tissue engineering. Thyrotropin (TSH) has been shown to regulate bone metabolism independently of thyroid hormone, including the fate of osteoblasts and osteoclasts, but whether it affects osteogenic differentiation of PDLSCs is unknown. MATERIALS AND METHODS: PDLSCs were isolated and cultured from human periodontal ligament and grown in osteogenic medium (containing sodium ß-glycerophosphate, ascorbic acid, and dexamethasone). Recombinant human TSH was added to the culture medium. Osteogenic differentiation of PDLSCs was assessed after 14 days by staining with alkaline phosphatase and alizarin red and by detection of osteogenic differentiation genes. Differentially expressed genes (DEGs) in PDLSCs under TSH were detected by high-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed the biological functions and signaling pathways involved in DEGs. RESULTS: We found that osteogenic differentiation of PDLSCs was significantly inhibited in the presence of TSH: including decreased calcium nodule formation, decreased alkaline phosphatase levels, and decreased collagen synthesis. Using high-throughput sequencing, we found changes in the expression of some osteogenesis-related genes, which may be the reason that TSH inhibits osteogenic differentiation of PDLSCs. CONCLUSION: Unless TSH is ≥10 mU/L, patients with subclinical hypothyroidism usually do not undergo thyroxine supplementation therapy. However, in this work, we found that elevated TSH inhibited the osteogenic differentiation of PDLSCs. Therefore, correction of TSH levels in patients with subclinical hypothyroidism may be beneficial to improve orthodontic, implant, and periodontitis outcomes in these patients.


Asunto(s)
Hipotiroidismo , Osteogénesis , Humanos , Osteogénesis/fisiología , Tirotropina/metabolismo , Ligamento Periodontal , Fosfatasa Alcalina/metabolismo , Células Madre , Diferenciación Celular/fisiología , Hipotiroidismo/metabolismo , Células Cultivadas , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA