Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293554

RESUMEN

Doublesex (Dsx) is a polymorphic transcription factor of the DMRTs family, which is involved in male sex trait development and controls sexual dimorphism at different developmental stages in arthropods. However, the transcriptional regulation of the Dsx gene is largely unknown in decapods. In this study, we reported the cDNA sequence of PmDsx in Penaeus monodon, which encodes a 257 amino acid polypeptide. It shared many similarities with Dsx homologs and has a close relationship in the phylogeny of different species. We demonstrated that the expression of the male sex differentiation gene Dsx was predominantly expressed in the P. monodon testis, and that PmDsx dsRNA injection significantly decreased the expression of the insulin-like androgenic gland hormone (IAG) and male sex-determining gene while increasing the expression of the female sex-determining gene. We also identified a 5'-flanking region of PmIAG that had two potential cis-regulatory elements (CREs) for the PmDsx transcription. Further, the dual-luciferase reporter analysis and truncated mutagenesis revealed that PmDsx overexpression significantly promoted the transcriptional activity of the PmIAG promoter via a specific CRE. These results suggest that PmDsx is engaged in male reproductive development and positively regulates the transcription of the PmIAG by specifically binding upstream of the promoter of the PmIAG. It provides a theoretical basis for exploring the sexual regulation pathway and evolutionary dynamics of Dmrt family genes in P. monodon.


Asunto(s)
Insulinas , Penaeidae , Animales , Masculino , Femenino , Penaeidae/genética , Secuencia de Aminoácidos , ADN Complementario , Secuencia de Bases , Filogenia , Factores de Transcripción/genética , Hormonas , Aminoácidos/genética , Insulinas/genética
2.
Ecotoxicol Environ Saf ; 222: 112504, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34265533

RESUMEN

This study aimed to investigate the intoxication mechanism of golden pompano (Trachinotus ovatus) exposed to high ammonia levels and the effects on the immune and antioxidant mechanisms of gills. Juvenile golden pompano was exposed to ammonia (total ammonia: 26.9 mg/L) to induce 96 h of ammonia stress, and a 96 h recovery experiment was performed after poisoning. Then, we evaluated hematological parameters, the histological structure and the expression of related genes. In this experiment, continuous exposure to high levels of ammonia led to a significant increase in plasma alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) levels (P < 0.05), and the levels of triiodothyronine (T3) and tetraiodothyronine (T4) were significantly reduced (P < 0.05). Moreover, the expression of antioxidant genes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and inflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) increased (P < 0.05). These results indicate that ammonia activates the active osmotic regulatory mechanism of fish gills and participates in defense and immune responses. However, with prolonged exposure to ammonia, the balance of the defense system is disrupted, leading to oxidative damage and inflammation of the gill tissue. This research not only helps elucidate the intoxication mechanism of golden pompano by ammonia at the molecular level but also provides a theoretical basis for further research on detoxification mechanisms.


Asunto(s)
Amoníaco , Branquias , Amoníaco/toxicidad , Alimentación Animal/análisis , Animales , Antioxidantes , Suplementos Dietéticos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Branquias/metabolismo , Estrés Oxidativo , Transducción de Señal
3.
Fish Shellfish Immunol ; 35(1): 161-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23639934

RESUMEN

Two trials were conducted to determine the effects of honeysuckle on shrimp, Penaeus monodon, first on growth performance, secondly on the immune response of shrimp. In trial 1, shrimp (mean initial wet weight about 3.02 g) were fed with five diets containing 0% (basal diet), 0.1%, 0.2%, 0.4% and 0.8% honeysuckle in triplicate for 60 days. Growth performance (final body wet weight, FBW; weight gain, WG; biomass gain, BG) of shrimp fed honeysuckle diets were higher (P < 0.05) than that of shrimp fed the basal diet, shrimp fed 0.4% honeysuckle diet showed the highest value of growth performance. Shrimp fed 0.2% honeysuckle diet showed highest value of survival. The total antioxidant status (TAS) and glutathione peroxidase (GSH-Px) activity of shrimp fed 0.2%, 0.4% and 0.8% honeysuckle diets were higher (P < 0.05) than those of shrimp fed basal and 0.1% honeysuckle diets. Hepatopancreas malondialdehyde (MDA) of shrimp fed honeysuckle diets were lower (P < 0.05) than that of shrimp fed the basal diet. Total haemocyte count of shrimp fed the basal diet was lower (P < 0.05) than that of shrimp fed honeysuckle diets. Haemolymph clotting time of shrimp had the opposite trend with the total haemocyte count of shrimp. In trial 2, the shrimp were exposed to air during a simulated live transportation for 36 h after the rearing trial. The antioxidant responses were characterized by lower TAS and higher antioxidant enzyme activities (superoxide dismutase: SOD, GSH-Px) and higher oxidative stress level (MDA) in the hepatopancreas compared to levels found in trial 1. No mortalities were observed in any diet groups after 36 h of simulated live transportation. The glutathione (GSH) content and TAS of shrimp fed 0.2%, 0.4% and 0.8% honeysuckle diets were higher (P < 0.05) than those of shrimp fed the basal and 0.1% honeysuckle diets. The SOD activity of shrimp fed the basal diet was higher (P < 0.05) than that of shrimp fed honeysuckle diets. The GSH-Px activity of shrimp fed the basal diet was lower (P < 0.05) than that of shrimp fed 0.2%, 0.4% and 0.8% honeysuckle diets but without significant difference (P > 0.05) with shrimp fed 0.1% honeysuckle diet. Moreover, the oxidative stress level (MDA) recorded in the hepatopancreas with shrimp submitted to the honeysuckle diets were lower. In conclusion, results suggested that dietary intake containing honeysuckle could enhance the growth performance of P. monodon and improve its resistance to air exposure during simulated live transportation. Considering the effect of honeysuckle on both growth performance and survival of P. monodon, the level of honeysuckle supplemented in the diet should be between 0.2% and 0.4%.


Asunto(s)
Lonicera/química , Penaeidae/crecimiento & desarrollo , Penaeidae/inmunología , Animales , Antioxidantes/metabolismo , Acuicultura , Suplementos Dietéticos/análisis , Hemocitos/efectos de los fármacos , Hemocitos/metabolismo , Hemolinfa/efectos de los fármacos , Hemolinfa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Estrés Oxidativo , Penaeidae/efectos de los fármacos , Penaeidae/metabolismo , Estrés Fisiológico , Transportes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA