Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Planta Med ; 89(15): 1444-1456, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37709286

RESUMEN

The discovery that Na/K-ATPase acts as a signal transducer led us to investigate the structural diversity of cardiotonic steroids and study their ligand effects. By applying Na/K-ATPase activity assay-guided fractionation, we isolated a total of 20 cardiotonic steroids from Streptocaulon juventas, including an undescribed juventasoside B (10: ) and 19 known cardiotonic steroids. Their structures have been elucidated. Using our platform of purified Na/K-ATPase and an LLC-PK1 cell model, we found that 10: , at a concentration that induces less than 10% Na/K-ATPase inhibition, can stimulate the Na/K-ATPase/Src receptor complex and selectively activate downstream pathways, ultimately altering prostate cancer cell growth. By assessing the ligand effect of the isolated cardiotonic steroids, we found that the regulation of cell viability by the isolated cardiotonic steroids was not associated with their inhibitory potencies against Na/K-ATPase activity but reflected their ligand-binding affinity to the Na/K-ATPase receptor. Based on this discovery, we identified a unique active cardiotonic steroid, digitoxigenin (1: ), and verified that it can protect LLC-PK1 cells from hypoxic injury, implicating its potential use in ischemia/reperfusion injury and inducing collagen synthesis in primary human dermal fibroblast cells, and implicating that compound 2: is the molecular basis of the wound healing activity of S. juventas.


Asunto(s)
Cardenólidos , Glicósidos Cardíacos , Masculino , Porcinos , Animales , Humanos , Cardenólidos/farmacología , Ligandos , Glicósidos Cardíacos/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Cicatrización de Heridas , Ouabaína/farmacología
2.
J Nat Prod ; 86(8): 1950-1959, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37561816

RESUMEN

Coixol, a derivative of 2-benzoxazolinone extracted from coix (Coix lachryma-jobi L. var. ma-yuen Stapf), has demonstrated promising anti-inflammatory activity and low cytotoxicity. In this study, 26 coixol derivatives were designed and synthesized by hybridization with cinnamic acid to identify new anti-inflammatory agents. The anti-inflammatory activities of the derivatives were screened using LPS-induced overexpression of nitric oxide (NO) in RAW264.7 macrophages. On the basis of the screening results, compounds containing furan (9c) or nitrofuran (9j) moieties displayed more pronounced activity than coixol and celecoxib. Mechanistic investigations revealed that 9c and 9j suppressed the expression of induced nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß, which was associated with the inhibition of the nuclear factor (NF)-κB signaling pathway. In vivo studies confirmed the anti-inflammatory activity of 9c and 9j in a xylene-induced mice auricles edema model. The preliminary in vitro and in vivo research findings suggest that 9c and 9j have the potential to be developed as anti-inflammatory agents.


Asunto(s)
Antiinflamatorios , Transducción de Señal , Ratones , Animales , Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA