Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dairy Sci ; 106(10): 6731-6740, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37210347

RESUMEN

Brown fermented milk (BFM) is favored by consumers in the dairy market for its unique burnt flavor and brown color. However, Maillard reaction products (MRP) from high-temperature baking are also noteworthy. In this study, tea polyphenols (TP) were initially developed as potential inhibitors of MRP formation in BFM. The results showed that the flavor profile of BFM did not change after adding 0.08% (wt/wt) of TP, and its inhibition rates on 5-hydroxymethyl-2-furaldehyde (5-HMF), glyoxal (GO), methylglyoxal (MGO), Nε-carboxymethyl lysine (CML), and Nε-carboxyethyl lysine (CEL) were 60.8%, 27.12%, 23.44%, 57.7%, and 31.28%, respectively. After 21 d of storage, the levels of 5-HMF, GO, MGO, CML, and CEL in BFM with TP were 46.3%, 9.7%, 20.6%, 5.2%, and 24.7% lower than the control group, respectively. Moreover, a smaller change occurred in their color and the browning index was lower than that of the control group. The significance of this study was to develop TP as additives to inhibit the production of MRP in brown fermented yogurt without changing color and flavors, thereby making dairy products safer for consumers.


Asunto(s)
Reacción de Maillard , Leche , Animales , Leche/química , Lisina/análisis , Polifenoles/análisis , Óxido de Magnesio , Piruvaldehído/análisis , Glioxal/análisis , Productos Finales de Glicación Avanzada/análisis ,
2.
Environ Pollut ; 234: 953-959, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29665635

RESUMEN

Graphene oxide (GO) possesses versatile applicability and high hydrophilicity, thus may have frequent contact with aquatic organisms. However, the ecological risks of GO in aquatic ecosystems remain largely unexplored currently. This study evaluated the comprehensive toxicological effects of GO on Daphnia magna, a key species in fresh water ecosystem. The results revealed nonsevere acute toxicities, including immobility (72 h EC50: 44.3 mg/L) and mortality (72 h LC50: 45.4 mg/L), of GO on D. magna. To understand the underlying mechanism of GO exposure, changes in superoxide dismutase (SOD) and lipid peroxidation (LPO) of D. magna exposed to GO were correlated, which revealed elevated GO-mediated oxidative stress and damages, especially in the long-time and high-dose exposure groups. The observations of in vivo fluorescence labeled with 2', 7'-dichlorofluorescin further demonstrated that reactive oxygen species were concentrated in daphnia guts, which corresponded with the high bioaccumulation level (5 mg/L, 24 h body burden: 107.9 g/kg) of GO in daphnia guts. However, depuration of GO from daphnia was not difficult. Daphnia almost released all GO within 24 h after it was transferred to clean water. These results hence suggest that GO could accumulate and induce significant oxidative stress in the gut of D. magna, while D. daphnia can also relieve the acute toxicity by depurating GO.


Asunto(s)
Daphnia/fisiología , Grafito/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Daphnia/efectos de los fármacos , Agua Dulce , Peroxidación de Lípido , Estrés Oxidativo/fisiología , Óxidos/farmacología , Especies Reactivas de Oxígeno , Superóxido Dismutasa/metabolismo
3.
Sci Total Environ ; 610-611: 356-366, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28806552

RESUMEN

Human activities can enhance the frequency, intensity and occurrence of harmful algal blooms (HABs). Engineered nanoparticles (ENPs), contained in many materials, will inevitably enter coastal waters and thus cause unpredictable impacts on aquatic organisms. However, knowledge of the influence of ENPs on HAB species is still lacking. In this study, we examined the effects of titanium dioxide nanoparticles (nTiO2), zinc oxide nanoparticles (nZnO) and aluminum oxide nanoparticles (nAl2O3) on physiological changes and paralytic shellfish poisoning toxins (PSTs) production of Alexandrium tamarense. We found a dose-dependent decrease in photosynthetic activity of A. tamarense under all three ENPs and a significant growth inhibition induced by nZnO. The largest reactive oxygen species (ROS) production was induced by nTiO2, followed by nZnO and nAl2O3. Moreover, the PSTs production rate increased by 3.9-fold for nTiO2 (p<0.01) and 4.5-fold for nAl2O3 (p<0.01) at a concentration of 200mgL-1. The major component, C2 was transformed to its epimer C1 and the proportion of decarbamoyl toxins increased under 200mgL-1 of nZnO and nAl2O3. In addition, the proportion of carbamate toxins increased upon exposure to 2mgL-1 ENPs, while decreased upon exposure to 200mgL-1 ENPs. The changes in PSTs production and composition might be an adaptive response for A. tamarense to overcome the stress of ENPs exposure. This work brings the first evidence that ENP would affect PSTs production and profiles.


Asunto(s)
Dinoflagelados/efectos de los fármacos , Floraciones de Algas Nocivas , Toxinas Marinas/biosíntesis , Nanopartículas del Metal/química , Óxido de Aluminio/farmacología , Titanio/farmacología , Óxido de Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA