Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Phytomedicine ; 128: 155431, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537440

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE: To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS: Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS: Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION: The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.


Asunto(s)
Abietanos , Carcinoma de Pulmón de Células no Pequeñas , Estrés del Retículo Endoplásmico , Neoplasias Pulmonares , Factores de Transcripción NFATC , Abietanos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Animales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Factores de Transcripción NFATC/metabolismo , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Proto-Oncogenes Mas , Antígeno B7-H1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Receptor de Muerte Celular Programada 1 , Inmunoterapia/métodos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células A549 , Ratones Desnudos , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-myc/metabolismo , Masculino , Femenino
3.
Acta Pharm Sin B ; 13(3): 1164-1179, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36970196

RESUMEN

Sepsis-induced liver injury (SILI) is an important cause of septicemia deaths. BaWeiBaiDuSan (BWBDS) was extracted from a formula of Panax ginseng C. A. Meyer, Lilium brownie F. E. Brown ex Miellez var. viridulum Baker, Polygonatum sibiricum Delar. ex Redoute, Lonicera japonica Thunb., Hippophae rhamnoides Linn., Amygdalus Communis Vas, Platycodon grandiflorus (Jacq.) A. DC., and Cortex Phelloderdri. Herein, we investigated whether the BWBDS treatment could reverse SILI by the mechanism of modulating gut microbiota. BWBDS protected mice against SILI, which was associated with promoting macrophage anti-inflammatory activity and enhancing intestinal integrity. BWBDS selectively promoted the growth of Lactobacillus johnsonii (L. johnsonii) in cecal ligation and puncture treated mice. Fecal microbiota transplantation treatment indicated that gut bacteria correlated with sepsis and was required for BWBDS anti-sepsis effects. Notably, L. johnsonii significantly reduced SILI by promoting macrophage anti-inflammatory activity, increasing interleukin-10+ M2 macrophage production and enhancing intestinal integrity. Furthermore, heat inactivation L. johnsonii (HI-L. johnsonii) treatment promoted macrophage anti-inflammatory activity and alleviated SILI. Our findings revealed BWBDS and gut microbiota L. johnsonii as novel prebiotic and probiotic that may be used to treat SILI. The potential underlying mechanism was at least in part, via L. johnsonii-dependent immune regulation and interleukin-10+ M2 macrophage production.

4.
J Control Release ; 349: 327-337, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35787917

RESUMEN

Transcatheter arterial chemoembolization (TACE), the mainstream treatment for hepatocellular carcinoma (HCC), is a method of blocking tumor blood vessels with a mixture of lipiodol and chemotherapeutics. And the contrast-enhanced computed tomography (CT) is the commonly used way for follow-up of HCC after TACE. However, it is noteworthy that when lipiodol deposition plays an embolic effect, it also produces high-density artifacts in CT images. These artifacts usually conceal the enhancement effect of iodine contrast agents. As a result, the residual region is difficult to be visualized. To overcome this obstacle, we developed one kind of Lu3+/Gd3+ doped fluoride nanoprobe modified with Dp-PEG2000 to realize CT/MRI dual-modality imaging of HCC. Compared with lipiodol or ioversol, the obtained PEGylated product LG-PEG demonstrated a greater density value in high keV CT images. In vitro experiments showed the lipiodol artifacts can be removed in virtual non-contrast (VNC) imaging, but the density of ioversol was also removed at the same time. However, the LG-PEG synthesized in this work can still maintain a high density in VNC imaging, which indicates that LG-PEG can exploit its advantages to the full in VNC imaging. Furthermore, LG-PEG successfully exerted tumor enhancement effects in the in vivo VNC images of HCC with lipiodol deposition. In addition, LG-PEG exhibited a strong T2 enhancement effect with low biological toxicity and less side-effect on the main organ and blood. Thus, the LG-PEG reported in this research can serve as an effective and safe VNC contrast agent for HCC imaging after TACE.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Yodo , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Quimioembolización Terapéutica/métodos , Medios de Contraste , Aceite Etiodizado , Fluoruros , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Polietilenglicoles , Tomografía Computarizada por Rayos X/métodos , Ácidos Triyodobenzoicos
5.
Gut ; 71(4): 734-745, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34006584

RESUMEN

OBJECTIVE: Programmed death 1 and its ligand 1 (PD-1/PD-L1) immunotherapy is promising for late-stage lung cancer treatment, however, the response rate needs to be improved. Gut microbiota plays a crucial role in immunotherapy sensitisation and Panax ginseng has been shown to possess immunomodulatory potential. In this study, we aimed to investigate whether the combination treatment of ginseng polysaccharides (GPs) and αPD-1 monoclonal antibody (mAb) could sensitise the response by modulating gut microbiota. DESIGN: Syngeneic mouse models were administered GPs and αPD-1 mAb, the sensitising antitumour effects of the combination therapy on gut microbiota were assessed by faecal microbiota transplantation (FMT) and 16S PacBio single-molecule real-time (SMRT) sequencing. To assess the immune-related metabolites, metabolomics analysis of the plasma samples was performed. RESULTS: We found GPs increased the antitumour response to αPD-1 mAb by increasing the microbial metabolites valeric acid and decreasing L-kynurenine, as well as the ratio of Kyn/Trp, which contributed to the suppression of regulatory T cells and induction of Teff cells after combination treatment. Besides, the microbial analysis indicated that the abundance of Parabacteroides distasonis and Bacteroides vulgatus was higher in responders to anti-PD-1 blockade than non-responders in the clinic. Furthermore, the combination therapy sensitised the response to PD-1 inhibitor in the mice receiving microbes by FMT from six non-responders by reshaping the gut microbiota from non-responders towards that of responders. CONCLUSION: Our results demonstrate that GPs combined with αPD-1 mAb may be a new strategy to sensitise non-small cell lung cancer patients to anti-PD-1 immunotherapy. The gut microbiota can be used as a novel biomarker to predict the response to anti-PD-1 immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Panax , Animales , Anticuerpos Monoclonales/farmacología , Apoptosis , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Muerte Celular , Microbioma Gastrointestinal/fisiología , Humanos , Factores Inmunológicos/farmacología , Inmunoterapia/métodos , Quinurenina/farmacología , Ligandos , Neoplasias Pulmonares/terapia , Ratones , Panax/metabolismo , Polisacáridos/farmacología , Triptófano/farmacología
6.
ACS Appl Mater Interfaces ; 13(36): 42473-42485, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34474563

RESUMEN

The particular characteristics of hypoxia, immune suppression in the tumor microenvironment, and the lack of accurate imaging guidance lead to the limited effects of stereotactic body radiotherapy (SBRT) in reducing the recurrence rate and mortality of hepatocellular carcinoma (HCC). This research developed a novel theranostic agent based on Bi/Se nanoparticles (NPs), synthesized by a simple reduction reaction method for in vivo CT image-guided SBRT sensitization in mice. After loading Lenvatinib (Len), the obtained Bi/Se-Len NPs had excellent performance in reversing hypoxia and the immune suppression status of HCC. In vivo CT imaging results uncovered that the radiotherapy (RT) area could be accurately labeled after the injection of Bi/Se-Len NPs. Under Len's unique and robust properties, in vivo treatment was then carried out upon injection of Bi/Se-Len NPs, achieving excellent RT sensitization effects in a mouse HCC model. Comprehensive tests and histological stains revealed that Bi/Se-Len NPs could reshape and normalize tumor blood vessels, reduce the hypoxic situation of the tumor, and upregulate tumor-infiltrating CD4+ and CD8+ T lymphocytes around the tumors. Our work highlights an excellent proposal of Bi/Se-Len NPs as theranostic nanoparticles for image-guided HCC radiotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Medios de Contraste/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas del Metal/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Animales , Bismuto/química , Bismuto/uso terapéutico , Bismuto/toxicidad , Vasos Sanguíneos/efectos de los fármacos , Carcinoma Hepatocelular/diagnóstico por imagen , Línea Celular Tumoral , Medios de Contraste/síntesis química , Medios de Contraste/toxicidad , Portadores de Fármacos/síntesis química , Portadores de Fármacos/uso terapéutico , Portadores de Fármacos/toxicidad , Femenino , Humanos , Hipoxia/tratamiento farmacológico , Neoplasias Hepáticas/diagnóstico por imagen , Linfocitos/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Ratones Endogámicos BALB C , Compuestos de Fenilurea/uso terapéutico , Medicina de Precisión , Puntos Cuánticos/química , Puntos Cuánticos/uso terapéutico , Puntos Cuánticos/toxicidad , Quinolinas/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/síntesis química , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/toxicidad , Radiocirugia , Selenio/química , Selenio/uso terapéutico , Selenio/toxicidad , Tomografía Computarizada por Rayos X
7.
Pharmacol Res ; 171: 105574, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34419228

RESUMEN

Currently, conventional methods of treating non-small cell lung cancer (NSCLC) have many disadvantages. An alternative effective therapy with minimal adverse reactions is urgently needed. Weijing decoction (WJD), which is a classic ancient Chinese herbal prescription, has been used successfully to treat pulmonary system diseases containing lung cancer in the clinic. However, the key active component and target of Weijing decoction are still unexplored. Therefore, for the first time, our study aims to investigate the pharmacological treatment mechanism of Weijing decoction in treating NSCLC via an integrated model of network pharmacology, metabolomics and biological methods. Network pharmacology results conjectured that Tricin is a main bioactive component in this formula which targets PRKCA to suppress cancer cell growth. Metabolomics analysis demonstrated that sphingosine-1-phosphate, which is regulated by sphingosine kinase 1 and sphingosine kinase 2, is a differential metabolite in plasma between the WJD-treated group and the control group, participating in the sphingolipid signaling. In vitro experiments demonstrated that Tricin had vital effects on the proliferation, pro-apoptosis, migration and colony formation of Lewis lung carcinoma cells. Through a series of validation assays, Tricin inhibited the tumor growth mainly by suppressing PRKCA/SPHK/S1P signaling and antiapoptotic signaling. On the other hand, Weijing formula could inhibit the tumor growth and prolong the survival time. A high dosage of Tricin was much more potent in animal experiments. In conclusion, we confirmed that Weijing formula and its primary active compound Tricin are promising alternative treatments for NSCLC patients.


Asunto(s)
Antineoplásicos Fitogénicos , Carcinoma Pulmonar de Lewis , Carcinoma de Pulmón de Células no Pequeñas , Flavonoides , Neoplasias Pulmonares , Animales , Femenino , Humanos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Flavonoides/farmacología , Flavonoides/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Metabolómica , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Esfingolípidos/metabolismo
8.
Pharmacol Res ; 169: 105656, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33964470

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the most frequently diagnosed cancers and the leading causes of cancer death worldwide. Therefore, new therapeutic agents are urgently needed to improve patient outcomes. Plumbagin (PLB), a natural sesquiterpene present in many Chinese herbal medicines, has been reported for its anti-cancer activity in various cancer cells. In this study, the effects and underlying mechanisms of PLB on the tumorigenesis of NSCLC were investigated. PLB dose-dependently inhibited the growth of NSCLC cell lines. PLB promoted ROS production, activated the endoplasmic reticulum (ER) stress pathway, and induced cell apoptosis, accompanied by the decreased expression level of ADP-ribosylation factor 1 (ARF1) in NSCLC cancer cells, and those effects of PLB could be reversed by the pretreatment with N-acetyl-L-cysteine (NAC). More importantly, the calcium chelator (BM) significantly reversed PLB-induced cell apoptosis. Furthermore, PLB significantly inhibited the growth of both H1975 xenograft and LLC1 tumors and exhibited antitumor activity by enhancing the number and the effector function of CD8+ T cells in KRASLA2 mice model and the LLC1 xenograft. Our findings suggest that PLB exerts potent antitumor activity against NSCLC in vitro and in vivo through ARF1 downregulation and induction of antitumor immune response, indicating that PLB is a new novel therapeutic candidate for the treatment of patients with NSCLC.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Antineoplásicos Fitogénicos/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Naftoquinonas/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Femenino , Activación de Linfocitos/efectos de los fármacos , Ratones Desnudos , Naftoquinonas/farmacología , Trasplante de Neoplasias
9.
J Exp Clin Cancer Res ; 39(1): 249, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33208183

RESUMEN

BACKGROUND: Accumulating evidence showed that regulating tumor microenvironment plays a vital role in improving antitumor efficiency. Programmed Death Ligand 1 (PD-L1) is expressed in many cancer cell types, while its binding partner Programmed Death 1 (PD1) is expressed in activated T cells and antigen-presenting cells. Whereas, its dysregulation in the microenvironment is poorly understood. In the present study, we confirmed that evodiamine downregulates MUC1-C, resulting in modulating PD-L1 expression in non-small cell lung cancer (NSCLC). METHODS: Cell viability was measured by MTT assays. Apoptosis, cell cycle and surface PD-L1 expression on NSCLC cells were analyzed by flow cytometry. The expression of MUC1-C and PD-L1 mRNA was measured by real time RT-PCR methods. Protein expression was examined in evodiamine-treated NSCLC cells using immunoblotting or immunofluorescence assays. The effects of evodiamine treatment on NSCLC sensitivity towards T cells were investigated using human peripheral blood mononuclear cells and Jurkat, apoptosis and IL-2 secretion assays. Female H1975 xenograft nude mice were used to assess the effect of evodiamine on tumorigenesis in vivo. Lewis lung carcinoma model was used to investigate the therapeutic effects of combination evodiamine and anti-PD-1 treatment. RESULTS: We showed that evodiamine significantly inhibited growth, induced apoptosis and cell cycle arrest at G2 phase of NSCLC cells. Evodiamine suppressed IFN-γ-induced PD-L1 expression in H1975 and H1650. MUC1-C mRNA and protein expression were decreased by evodiamine in NSCLC cells as well. Evodiamine could downregulate the PD-L1 expression and diminish the apoptosis of T cells. It inhibited MUC1-C expression and potentiated CD8+ T cell effector function. Meanwhile, evodiamine showed good anti-tumor activity in H1975 tumor xenograft, which reduced tumor size. Evodiamine exhibited anti-tumor activity by elevation of CD8+ T cells in vivo in Lewis lung carcinoma model. Combination evodiamine and anti-PD-1 mAb treatment enhanced tumor growth control and survival of mice. CONCLUSIONS: Evodiamine can suppress NSCLC by elevating of CD8+ T cells and downregulating of the MUC1-C/PD-L1 axis. Our findings uncover a novel mechanism of action of evodiamine and indicate that evodiamine represents a potential targeted agent suitable to be combined with immunotherapeutic approaches to treat NSCLC cancer patients. MUC1-C overexpression is common in female, non-smoker, patients with advanced-stage adenocarcinoma.


Asunto(s)
Mucina-1/metabolismo , Extractos Vegetales/uso terapéutico , Receptor de Muerte Celular Programada 1/metabolismo , Quinazolinas/uso terapéutico , Animales , Linfocitos T CD8-positivos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Regulación hacia Abajo , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Extractos Vegetales/farmacología , Quinazolinas/farmacología , Transfección
10.
Curr Opin Pharmacol ; 54: 1-10, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32619934

RESUMEN

Immune checkpoint blockade therapies that target CTLA-4 and PD-1/PD-L1 have ushered in a new era of cancer treatment. Nevertheless, a significant proportion of patients demonstrated primary or acquired resistance. Harnessing gut microbiota has been an emerging novel therapeutic strategy to overcome resistance. Here we summarized the current research status of gut microbiota in immune checkpoint blockade therapies, clinical trials, underlying mechanisms and challenges of microbiome research in checkpoint immunotherapy. Findings from preclinical models, standardized microbiome analysis and progress of multi-omic approaches may better disclose the interaction between gut microbiota and immune checkpoint inhibitors (ICIs) and traditional Chinese medicine can be a potential microbiome modulator to sensitize the response to ICIs.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Microbioma Gastrointestinal , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/microbiología , Animales , Humanos , Inmunoterapia
11.
Integr Cancer Ther ; 18: 1534735419890020, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31838881

RESUMEN

Conventional methods in treating non-small cell lung cancer contain surgery, chemotherapy, radiotherapy, and targeted therapy, which have various defects. Recently, with the deeper research on tumor immunity, immunotherapy has made the breakthrough in the treatment of cancers. Especially developments of programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors bring the therapy into a new stage. This review mainly focuses on introducing existing monoclonal antibodies containing nivolumab, pembrolizumab, atezolizumab, avelumab, and durvalumab, along with 3 ordinary biomarkers such as PD-L1 expression, tumor mutation burden, and microsatellite instability. By understanding the resistance mechanism of anti-PD-1/L1 blockade, research is further improving the survival benefit and expanding the benefit population. So, PD-1/PD-L1 inhibitors begin to be combined with various therapeutic strategies clinically. Discussion and comparison of their effectiveness and safety are also comprehensively reviewed. Meanwhile, we explore the potential, the impact, and mechanisms of combining traditional Chinese medicine with immunotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Receptor de Muerte Celular Programada 1/metabolismo , Humanos , Inmunoterapia/métodos , Medicina Tradicional China/métodos
12.
Pharmacol Res ; 144: 79-89, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30974169

RESUMEN

Lung cancer is the most commonly diagnosed cancer worldwide and it is also the most leading cause of cancer-related deaths. Although multiple generations of targeted therapeutic drugs such as gefitinib and afatinib specifically targeting the epidermal growth factor receptor (EGFR) pathway are currently available for lung cancer treatment, none of them can escape their eventual drug-resistance. As a key component of Cordyceps Sinensis and widely used in traditional Chinese medicines (TCM), cordycepin (CD) has attracted increasing attention to both scientists and clinicians. We aimed to explore the potential in developing cordycepin (CD) as an anti-lung cancer drug. A systematic analysis was conducted on a panel of non-small cell lung cancer (NSCLC) cell lines to identify the cells sensitive to CD. We found that CD can affect different aspects of lung cancer development including proliferation, migration, invasion, cell cycle, and apoptosis. We then explored the underlying molecular mechanisms of CD-mediated NSCLC cell apoptosis by conducting a series of in vitro and in vivo experiments. We found that in addition to affecting different stages of NSCLC development including tumor growth, migration, and invasion, the CD is capable of inhibiting NSCLC cell cycle progression and inducing cancer cell apoptosis without apparent adverse effect on normal lung cells. Furthermore, we found that the cells containing EGFR mutations are more sensitive to CD treatment than those without. Mechanistically, CD induces NSCLC cell apoptosis by interacting with and activating AMP-activated protein kinase (AMPK). More importantly, we found that the potency of CD's anticancer effect both in vitro and in vivo is comparable to afatinib and even better than gefitinib. Our findings suggest that CD either by itself or in combination with the currently available targeted therapeutic drugs might be additional therapeutic options for drug-resistance NSCLC treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Desoxiadenosinas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Ratones Desnudos , Transducción de Señal/efectos de los fármacos
13.
Pharmacol Res ; 115: 45-55, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27864022

RESUMEN

Non-small cell lung cancer (NSCLC) is the dominant type of lung cancer. Molecular targeting has highly improved the treatment efficacy of lung cancer, but new challenges have emerged, such as gefitinib-resistance and cancer recurrence. Therefore, new chemotherapeutic agents and treatment strategies are urgently needed. Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao', which has been shown to exhibit powerful anti-cancer activity in certain types of cancer; however, its activity in gefitinib-resistant lung cancer has never been addressed. In this study, we used a high-throughput screening assay for epidermal growth factor receptor (EGFR) inhibitors and discovered that Shikonin is a potent inhibitor of EGFR. The cytotoxicity of Shikonin and its anti-cancer mechanism in NSCLC was deeply explored. Shikonin exhibited selective cytotoxicity among two NSCLC cell lines (H1975 and H1650) and one normal lung fibroblast cell line (CCD-19LU). Shikonin significantly increased the activity of caspases and poly (ADP-ribosyl) polymerase (PARP), which are indicators of apoptosis, and the intensity of ROS by greater than 10-fold. NAC, an inhibitor of ROS, completely blocked apoptosis, caspase and PARP activation induced by Shikonin. Shikonin remarkably suppressed the phosphorylation of EGFR and led to EGFR degradation. The enhancement of ROS generation in H1650 and H1975 gefitinib-resistant NSCLC cells leads to impairment of growth and induction of apoptosis, whereas modulation of EGFR degradation and its downstream signalling pathways by Shikonin contributes to its anti-tumour properties in H1975 gefitinib-resistant NSCLC cells (with T790M and L858R activating mutations). Shikonin-induced cell apoptosis is closely associated with ROS elevation in the cells. These findings indicate that Shikonin can be an effective small molecule treating gefitinib-resistant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Naftoquinonas/farmacología , Quinazolinas/farmacología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Gefitinib , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Neoplasias Pulmonares/metabolismo , Mutación/efectos de los fármacos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos
14.
Zhongguo Zhong Yao Za Zhi ; 40(9): 1798-802, 2015 May.
Artículo en Chino | MEDLINE | ID: mdl-26323151

RESUMEN

To study the effect of the combined administration of different doses of Glycyrrhizae Radix et Rhizoma and Atractylodis Macrocephalae Rhizoma on the proliferation of DFMO-treated intestinal epithelial cells (IEC-6) and p53, p21 mRNA and protein expressions, in order to define the molecular basis for the effect of the combined administration of different doses of Glycyrrhizae Radix et Rhizoma and Atractylodis Macrocephalae Rhizoma on the cell proliferation. The effect of the drugs on the cell division rate and cell cycle of IEC-6 cells was detected by FCM. Quantitative Real-time PCR (qRT-PCR) was used to analyze the effect of the drugs on mRNA of p2l and p53 related to IEC-6 proliferation. Western blot was used to analyze the effect of the drugs on p2l and p53 protein expressions of IEC-6 cells. Atractylodis Macrocephalae Rhizoma could increase p53, p21 mRNA and proteins expression in DFMO-treated IEC-6 cells. The combined administration of different ratios of Atractylodis Macrocephalae Rhizoma and Glycyrrhizae Radix et Rhizoma could significantly down-regulate Atractylodis Macrocephalae Rhizoma's effect on p53, p21 mRNA and proteins expression in DFMO-treated IEC-6 cells and promote the proliferation of IEC-6 cells. The combined administration of Atractylodis Macrocephalae Rhizoma and Glycyrrhizae Radix et Rhizoma could down-regulate Atractylodis Macrocephalae Rhizoma's effect on DFMO-treated intestinal epithelial cells (IEC-6).


Asunto(s)
Atractylodes/química , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Medicamentos Herbarios Chinos/farmacología , Expresión Génica/efectos de los fármacos , Glycyrrhiza/química , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Ratas , Rizoma/química , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA