Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Signal Behav ; 18(1): 2163069, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36681901

RESUMEN

Platycodon grandiflorus set ornamental, edible, and medicinal plant with broad prospects for further application development. However, there are no reports on the YABBY transcription factor in P. grandiflorus. Identification and analysis of the YABBY gene family of P. grandiflorus using bioinformatics means. Six YABBY genes were identified and divided into five subgroups. Transcriptome data and qRT-PCR were used to analyze the expression patterns of YABBY. YABBY genes exhibited organ-specific patterns in expression in P grandiflorus. Upon salt stress and drought induction, P. grandiflorus presented different morphological and physiological changes with some dynamic changes. Under salt treatment, the YABBY gene family was down-regulated; PgYABBY5 was up-regulated in leaves at 24 h. In drought treatment, PgYABBY1, PgYABBY2, and PgYABBY3 were down-regulated to varying degrees, but PgYABBY3 was significantly up-regulated in the roots. PgYABBY5 was up-regulated gradually after being down-regulated. PgYABBY5 was significantly up-regulated in stem and leaf at 48 h. PgYABBY6 was down-regulated at first and then significantly up-regulated. The dynamic changes of salt stress and drought stress can be regarded as the responses of plants to resist damage. During the whole process of salt and drought stress treatment, the protein content of each tissue part of P grandiflorus changed continuously. At the same time, we found that the promoter region of the PgYABBY gene contains stress-resistant elements, and the regulatory role of YABBY transcription factor in the anti-stress mechanism of P grandiflorus remains to be studied. PgYABBY1, PgYABBY2, and PgYABBY5 may be involved in the regulation of saponins in P. grandiflorus. PgYABBY5 may be involved in the drought resistance mechanism in P. grandiflorus stems and leaves. This study may provide a theoretical basis for studying the regulation of terpenoids by the YABBY transcription factor and its resistance to abiotic stress.


Asunto(s)
Plantas Medicinales , Platycodon , Platycodon/genética , Platycodon/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
Mol Biol Rep ; 50(1): 245-253, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36329337

RESUMEN

Apiaceae plants are used as medicinal herbs, pesticides, spices, and vegetables; thus, accurately identifying Apiaceae species is important. The grassland ecosystem of Heilongjiang Province in northern China has huge reserves of wild Apiaceae plants, but few reports have systematically documented their diversity. In this study, 275 Apiaceae plants of 23 species in 18 genera were collected from this area. We identified Apiaceae species by using nuclear internal transcribed spacer (ITS/ITS2) and psbA-trnH (chloroplast non-coding region) sequences based on experimental data. The identification efficiency of ITS, ITS2 and psbA-trnH sequences was determined and evaluated by sequence alignment and analysis, intraspecific and interspecific genetic distance analyses, and phylogenetic tree construction. ITS, ITS2 could distinguish 21 species from 17 genera of Apiaceae with good identification effect. When identifying species in the Apiaceae family, ITS2 can be used as the core barcode and psbA-trnH can be used as the supplementary barcode. These results can enrich the reference Apiaceae DNA barcode database.


Asunto(s)
Apiaceae , Plantas Medicinales , Código de Barras del ADN Taxonómico/métodos , Apiaceae/genética , Filogenia , Ecosistema , ADN de Plantas/genética , Plantas Medicinales/genética
3.
Front Chem ; 10: 889365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35864865

RESUMEN

Light quality consists of a spectrum of different bands, which not only affects plant, development, and primary metabolism but also affects the secondary metabolism of plants. It is an important factor affecting the content of active components of medicinal plants. The A. paniculata seedlings planted in the laboratory, as materials, were tested with red light, far red light, blue light, and ultraviolet light separately. The study assays the content of six main chemical components separately by LC-MS, observes the changes in the content, and analyzes the relationship between the light quality and the active ingredient of A. paniculata. Using the ointment yield and pH value, the fingerprint analysis method of A. paniculata standard decoction was established, and we discussed the selection of index components of A. paniculata standard decoction. It was suggested to select andrographolide as the index component. It will provide a theoretical basis for the large area cultivation of A. paniculata and optimize the quality of medicinal materials to ensure the quality of standard decoction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA