Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 241(4): 1676-1689, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38044709

RESUMEN

In potato, stolon swelling is a complex and highly regulated process, and much more work is needed to fully understand the underlying mechanisms. We identified a novel tuber-specific basic helix-loop-helix (bHLH) transcription factor, StbHLH93, based on the high-resolution transcriptome of potato tuber development. StbHLH93 is predominantly expressed in the subapical and perimedullary region of the stolon and developing tubers. Knockdown of StbHLH93 significantly decreased tuber number and size, resulting from suppression of stolon swelling. Furthermore, we found that StbHLH93 directly binds to the plastid protein import system gene TIC56 promoter, activates its expression, and is involved in proplastid-to-amyloplast development during the stolon-to-tuber transition. Knockdown of the target TIC56 gene resulted in similarly problematic amyloplast biogenesis and tuberization. Taken together, StbHLH93 functions in the differentiation of proplastids to regulate stolon swelling. This study highlights the critical role of proplastid-to-amyloplast interconversion during potato tuberization.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Transcriptoma , Plastidios/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Genes (Basel) ; 14(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38136966

RESUMEN

Family-1 UDP-glycosyltransferases (UGTs) are the most common and functional glycosyltransferases in the plant world. UGT is closely related to plant growth and the response to abiotic stress. However, despite systematic research, our understanding of potato UGT genes is still unclear. In this study, we identified 174 potato UGT proteins based on their conserved plant secondary product glycosyltransferase (PSPG) motifs. Phylogenetic analyses were used to compare these proteins with Arabidopsis UGTs and other plant UGTs, and it was found that they could be clustered into 18 distinct groups. Patterns of intron gain/loss and intron phases within potato UGTs revealed highly conserved intron insertion events. The promoter cis-elements of these 174 UGT genes were systematically investigated. The promoter regions of these UGT genes are known to contain various classes of cis-acting compounds. These include elements that are light-responsive, phytohormone-responsive, and stress-responsive. Transcriptome data analysis established that 25, 10, 6, and 4 of these 174 UGT genes were specifically expressed in leaves, roots, stolons, and young tubers, respectively. The mannitol-treated transcriptomic data showed thirty-eight UGT genes were significantly upregulated. The quantitative real-time PCR results showed that the four genes were all responsive to osmotic stress under a 10% PEG6000 treatment. The results of our study provide a basis for clarifying the molecular mechanism of potato osmotic stress resistance and better understanding its function in the future.


Asunto(s)
Glicosiltransferasas , Solanum tuberosum , Glicosiltransferasas/genética , Filogenia , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Presión Osmótica , Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA