RESUMEN
Introduction: Pulmonary fibrosis is a terminal lung disease characterized by fibroblast proliferation, extracellular matrix accumulation, inflammatory damage, and tissue structure destruction. The pathogenesis of this disease, particularly idiopathic pulmonary fibrosis (IPF), remains unknown. Macrophages play major roles in organ fibrosis diseases, including pulmonary fibrosis. The phenotype and polarization of macrophages are closely associated with pulmonary fibrosis. A new direction in research on anti-pulmonary fibrosis is focused on developing drugs that maintain the stability of the pulmonary microenvironment. Methods: We obtained gene sequencing data and clinical information for patients with IPF from the GEO datasets GSE110147, GSE15197, GSE24988, GSE31934, GSE32537, GSE35145, GSE53845, GSE49072, GSE70864, and GSE90010. We performed GO, KEGG enrichment analysis and GSEA analysis, and conducted weighted gene co-expression network analysis. In addition, we performed proteomic analysis of mouse lung tissue. To verify the results of bioinformatics analysis and proteomic analysis, mice were induced by intratracheal instillation of bleomycin (BLM), and gavaged for 14 days after modeling. Respiratory function of mice in different groups was measured. Lung tissues were retained for histopathological examination, Western Blot and real-time quantitative PCR, etc. In addition, lipopolysaccharide, interferon-γ and interleukin-4 were used to induce RAW264.7 cells for 12h in vitro to establish macrophage inflammation and polarization model. At the same time, HG2 intervention was given. The phenotype transformation and cytokine secretion of macrophages were investigated by Western Blot, RT-qPCR and flow cytometry, etc. Results: Through bioinformatics analysis and experiments involving bleomycin-induced pulmonary fibrosis in mice, we confirmed the importance of macrophage polarization in IPF. The analysis revealed that macrophage polarization in IPF involves a change in the phenotypic spectrum. Furthermore, experiments demonstrated high expression of M2-type macrophage-associated biomarkers and inducible nitric oxide synthase, thus indicating an imbalance in M1/M2 polarization of pulmonary macrophages in mice with pulmonary fibrosis. Discussion: Our investigation revealed that the ethyl acetate extract (HG2) obtained from the roots of Prismatomeris connata Y. Z. Ruan exhibits therapeutic efficacy against bleomycin-induced pulmonary fibrosis. HG2 modulates macrophage polarization, alterations in the TGF-ß/Smad pathway, and downstream protein expression in the context of pulmonary fibrosis. On the basis of our findings, we believe that HG2 has potential as a novel traditional Chinese medicine component for treating pulmonary fibrosis.
Asunto(s)
Acetatos , Fibrosis Pulmonar Idiopática , Farmacología en Red , Humanos , Animales , Ratones , Proteómica , Bleomicina , Biología ComputacionalRESUMEN
Honokiol, the main bioactive extract of Magnolia officinalis, exhibits extensive therapeutic actions. Its treatment for advanced non-small cell lung cancer is undergoing clinical trials in China. However, the published safety evaluation studies have focused on extract mixtures of Magnolia officinalis in which the honokiol content was well below the reported clinical dose of the honokiol monomer. Therefore, safety assessment of the honokiol monomer is urgently needed. Our previous studies have already demonstrated that a high dose of the honokiol microemulsion (0.6 µg/mL) induces developmental toxicity in rats and zebrafish by inducing oxidative stress. By exploring the relationship between time and toxicity, we found that developmental toxic responses were stage-dependent. They mainly occurred within the first 24 h post fertilization (hpf) especially the first 12 hpf. In zebrafish, low doses of honokiol microemulsion (0.15, 0.21 µg/mL) significantly decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the mRNA expression of bcl-2. In contrast, high dose (0.6 µg/mL) increased the levels of ROS and MDA, decreased activities and mRNA expression of superoxide dismutase (SOD) and catalase (CAT), and increased mRNA expression of bax, c-jnk, p53 and bim. By acridine orange staining, we found that a high dose of honokiol microemulsion induced apoptosis mainly in zebrafish brain. In rat pheochromocytoma cells (PC12 cells), low doses of the honokiol microemulsion (1, 5, 10 µM) exerted a protective effect against H2O2-induced oxidative damage while high doses (≥20 µM) induced oxidative stress, which further confirms the dual effects of honokiol microemulsion on nerve cells. These dual roles of the honokiol microemulsion in oxidation-reduction reactions and apoptosis may be regulated by the forkhead box class O (FoxO) signaling pathway. Due to the potential of developmental toxicity, we recommend that the administration of high dose honokiol microemulsion in pregnant women should be considered with caution.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Femenino , Ratas , Animales , Humanos , Embarazo , Pez Cebra/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Oxidación-Reducción , Apoptosis , Transducción de Señal , Extractos Vegetales/farmacología , ARN Mensajero/metabolismoRESUMEN
As the use of herbs has become more popular worldwide, there are increasing reports of herb-drug interactions (HDIs) following the combination of herbs and drugs. The active components of herbs are complex and have a variety of pharmacological activities, which inevitably affect changes in the pharmacokinetics of chemical drugs in vivo. The absorption, distribution, metabolism, and excretion of drugs in vivo are closely related to the expression of drug transporters. When the active components of herbs inhibit or induce the expression of transporters, this can cause changes in substrate pharmacokinetics, resulting in changes in the efficacy and toxicity of drugs. In this article, the tissue distribution and physiological functions of drug transporters are summarized through literature retrieval, and the effects of herbs on drug transporters and the possible mechanism of HDIs are analyzed and discussed in order to provide ideas and a reference for further guiding of safe clinical drug use.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: The liver toxicity of Reynoutria multiflora (Thunb.) Moldenke. (Polygonaceae) (Polygonum multiflorum Thunb, PM) has always attracted much attention, but the related toxicity materials and mechanisms have not been elucidated due to multi-component and multi-target characteristics. In previous hepatotoxicity screening, different components of PM were first evaluated and the hepatotoxicity of component D [95% ethanol (EtOH) elution] in a 70% EtOH extract of PM (PM-D) showed the highest hepatotoxicity. Furthermore, the main components of PM-D were identified and their hepatotoxicity was evaluated based on a zebrafish embryo model. However, the hepatotoxicity mechanism of PM-D is unknown. AIM OF THE STUDY: This work is to explore the hepatotoxicity mechanisms of PM-D by integrating network toxicology and spatially resolved metabolomics strategy. MATERIALS AND METHODS: A hepatotoxicity interaction network of PM-D was constructed based on toxicity target prediction for eight key toxic ingredients and a hepatotoxicity target collection. Then the key signaling pathways were enriched, and molecular docking verification was implemented to evaluate the ability of toxic ingredients to bind to the core targets. The pathological changes of liver tissues and serum biochemical assays of mice were used to evaluate the liver injury effect of mice with oral administration of PM-D. Furthermore, spatially resolved metabolomics was used to visualize significant differences in metabolic profiles in mice after drug administration, to screen hepatotoxicity-related biomarkers and analyze metabolic pathways. RESULTS: The contents of four key toxic compounds in PM-D were detected. Network toxicology identified 30 potential targets of liver toxicity of PM-D. GO and KEGG enrichment analyses indicated that the hepatotoxicity of PM-D involved multiple biological activities, including cellular response to endogenous stimulus, organonitrogen compound metabolic process, regulation of the apoptotic process, regulation of kinase, regulation of reactive oxygen species metabolic process and signaling pathways including PI3K-Akt, AMPK, MAPK, mTOR, Ras and HIF-1. The molecular docking confirmed the high binding activity of 8 key toxic ingredients with 10 core targets, including mTOR, PIK3CA, AKT1, and EGFR. The high distribution of metabolites of PM-D in the liver of administrated mice was recognized by mass spectrometry imaging. Spatially resolved metabolomics results revealed significant changes in metabolic profiles after PM-D administration, and metabolites such as taurine, taurocholic acid, adenosine, and acyl-carnitines were associated with PM-D-induced liver injury. Enrichment analyses of metabolic pathways revealed tht linolenic acid and linoleic acid metabolism, carnitine synthesis, oxidation of branched-chain fatty acids, and six other metabolic pathways were significantly changed. Comprehensive analysis revealed that the hepatotoxicity caused by PM-D was closely related to cholestasis, mitochondrial damage, oxidative stress and energy metabolism, and lipid metabolism disorders. CONCLUSIONS: In this study, the hepatotoxicity mechanisms of PM-D were comprehensively identified through an integrated spatially resolved metabolomics and network toxicology strategy, providing a theoretical foundation for the toxicity mechanisms of PM and its safe clinical application.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fallopia multiflora , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Fallopia multiflora/química , Fallopia multiflora/toxicidad , Metabolómica , Ratones , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Serina-Treonina Quinasas TOR , Pez CebraRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has been applied for more than 2000 years. However, modern basic research on the safety of TCMs is limited. Establishing safety evaluation technology in line with the characteristics of TCM and conducting large-scale basic toxicity research are keys to comprehensively understand the toxicity of TCMs. In recent years, zebrafish has been used as a model organism for toxicity assessment and is increasingly utilized for toxicity research of TCMs. Yet, a comprehensive review in using zebrafish as a toxicological model for TCMs is lacked. AIM OF THE STUDY: We aim to summarize the progress and limitation in toxicity evaluation of TCMs using zebrafish and put forward the future research ideas. MATERIALS AND METHODS: The scientific databases, including Springer, Science Direct, Wiley, Pubmed and China Knowledge Resource Integrated (CNKI) were searched using the key words of zebrafish, toxicology, traditional Chinese medicine, acute toxicity, liver injury, cardiotoxicity, kidney toxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, ototoxicity, and osteotoxicity. RESULTS: Zebrafish assays are low experimental cost and short cycle, easily achieving high-throughput toxicity screening, and exemption from ethical legislation up to 5 dpf. It has been widely used to evaluate the acute toxicity, liver toxicity, cardiotoxicity, nephrotoxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, and ototoxicity caused by TCMs, although some physiological difference limited its application. CONCLUSIONS: Zebrafish is a powerful model for TCMs toxicity evaluation, but it is not flawless. The toxicity testing criterion and high throughput assays are urgent to be established. This review provides references for future studies.
Asunto(s)
Medicamentos Herbarios Chinos/toxicidad , Modelos Animales , Pruebas de Toxicidad/métodos , Animales , Evaluación Preclínica de Medicamentos , Medicina Tradicional China , Pez CebraRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicines (TCMs) have made great contributions to the prevention and treatment of human diseases in China, and especially in cases of COVID-19. However, due to quality problems, the lack of standards, and the diversity of dosage forms, adverse reactions to TCMs often occur. Moreover, the composition of TCMs makes them extremely challenging to extract and isolate, complicating studies of toxicity mechanisms. AIM OF THE REVIEW: The aim of this paper is therefore to summarize the advanced applications of mass spectrometry imaging (MSI) technology in the quality control, safety evaluations, and determination of toxicity mechanisms of TCMs. MATERIALS AND METHODS: Relevant studies from the literature have been collected from scientific databases, such as "PubMed", "Scifinder", "Elsevier", "Google Scholar" using the keywords "MSI", "traditional Chinese medicines", "quality control", "metabolomics", and "mechanism". RESULTS: MSI is a new analytical imaging technology that can detect and image the metabolic changes of multiple components of TCMs in plants and animals in a high throughput manner. Compared to other chemical analysis methods, such as liquid chromatography-mass spectrometry (LC-MS), this method does not require the complex extraction and separation of TCMs, and is fast, has high sensitivity, is label-free, and can be performed in high-throughput. Combined with chemometrics methods, MSI can be quickly and easily used for quality screening of TCMs. In addition, this technology can be used to further focus on potential biomarkers and explore the therapeutic/toxic mechanisms of TCMs. CONCLUSIONS: As a new type of analysis method, MSI has unique advantages to metabolic analysis, quality control, and mechanisms of action explorations of TCMs, and contributes to the establishment of quality standards to explore the safety and toxicology of TCMs.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/química , Espectrometría de Masas/métodos , Medicina Tradicional China/normas , SARS-CoV-2 , Biomarcadores Farmacológicos , Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/normas , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China/instrumentación , Control de CalidadRESUMEN
Guided by cell-based anti-anaphylactic assay, eighteen cage-like monoterpenoid glycosides (1-18) were obtained from the bioactive fraction of P. lactiflora extract. Among these, compounds 1, 5, 6, 11, 12, 15, and 17 significantly reduced the release rate of ß-HEX and HIS without or with less cytotoxicity. Furthermore, the most potent inhibitor benzoylpaeoniflorin (5) was selected as the prioritized compound for the study of action of mechanism, and its anti-anaphylactic activity was medicated by dual-inhibiting HDC and MAPK signal pathway. Moreover, molecular docking simulation explained that benzoylpaeoniflorin (5) blocked the conversion of L-histidine to HIS by occupying the HDC active site. Finally, in vivo on PCA using BALB/c mice, benzoylpaeoniflorin (5) suppressed the IgE-mediated PCA reaction in antigen-challenged mice. These findings indicated that cage-like monoterpenoid glycosides, especially benzoylpaeoniflorin (5), mainly contribute to the anti-anaphylactic activity of P. lactiflora by dual-inhibiting HDC and MAPK signal pathway. Therefore, benzoylpaeoniflorin (5) may be considered as a novel drug candidate for the treatment of anaphylactic diseases.
Asunto(s)
Paeonia , Animales , Glucósidos , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Monoterpenos , Raíces de PlantasRESUMEN
BACKGROUND: The raw and processed roots of Polygonum multiflorum Thunb (PM) are commonly used in clinical practice to treat diverse diseases; however, reports of hepatotoxicity induced by Polygoni Multiflori Radix (PMR) and Polygoni Multiflori Radix Praeparata (PMRP) have emerged worldwide. Thus, it is necessary for researchers to explore methods to improve quality standards to ensure their quality and treatment effects. METHODS: In the present study, an ultra-high performance liquid chromatography triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS) method was optimized and validated for the determination of dianthrones in PMR and PMRP using bianthronyl as the internal standard. Chromatographic separation with a gradient mobile phase [A: acetonitrile and B: water containing 0.1% formic acid (v/v)] at a flow rate of 0.25 mL/min was achieved on an Agilent ZORBAX SB-C18 column (2.1 mm × 50 mm, 1.8 µm). The triple quadrupole mass spectrometer (TQMS) was operated in negative ionization mode with multiple reaction monitoring for the quantitative analysis of six dianthrones. Moreover, compounds 5 and 6 were further evaluated for their cytotoxicity in HepaRG cells by CCK-8 assay. RESULTS: The UHPLC-QQQ-MS/MS method was first developed to simultaneously determine six dianthrones in PMR and PMRP, namely, polygonumnolides C1-C4 (1-4), trans-emodin dianthrones (5), and cis-emodin dianthrones (6). The contents of 1-6 in 90 batches of PMR were in the ranges of 0.027-19.04, 0.022-13.86, 0.073-15.53, 0.034-23.35, 0.38-83.67 and 0.29-67.00 µg/g, respectively. The contents of 1-6 in 86 batches of commercial PMRP were in the ranges of 0.020-13.03, 0.051-8.94, 0.022-7.23, 0.030-12.75, 0.098-28.54 and 0.14-27.79 µg/g, respectively. Compounds 1-4 were almost completely eliminated after reasonable processing for 24 h and the contents of compounds 5 and 6 significantly decreased. Additionally, compounds 5 and 6 showed inhibitory activity in HepaRG cells with IC50 values of 10.98 and 15.45 µM, respectively. Furthermore, a systematic five-step strategy to standardize TCMs with endogenous toxicity was proposed for the first time, which involved the establishment of determination methods, the identification of potentially toxic markers, the standardization of processing methods, the development of limit standards and a risk-benefit assessment. CONCLUSION: The results of the cytotoxicity evaluation of the dianthrones indicated that trans-emodin dianthrones (5) and cis-emodin dianthrones (6) could be selected as toxic markers of PMRP. Taking PMR and PMRP as examples, we hope this study provides insight into the standardization and internationalization of endogenous toxic TCMs, with the main purpose of improving public health by scientifically using TCMs to treat diverse complex diseases in the future.
RESUMEN
Berberine (BBR) is a plant secondary metabolite that has been used in photodynamic therapy (PDT) in the last few decades. The present review aimed to discuss the research progress of BBR-mediated photodynamic actions. The following key words were searched in several databases: 'Berberine' combined with 'photodynamic therapy', 'sonodynamic therapy (SDT)', 'ultraviolet', 'reactive oxygen' and 'singlet oxygen'. The results demonstrated that both type I and type II reactions participated in the photodynamic progression of BBR derivatives. In addition, the photochemical characteristics of BBR derivatives were affected by the polarity, pH and O2 content of solvents. DNA binding increases the lifespan of the photoexcited BBR state and generation of singlet oxygen (1O2). The chemical properties of substituents in different positions of the BBR skeleton are pivotal for its photochemical properties, particularly the methylenedioxy group at the C-2 and C-3 positions. BBR is a promising agent for mediating both PDT- and SDT-treated diseases, particularly in tumors. However, further studies are required to validate their biological effects. In addition, the molecular mechanisms underlying the antitumor effects of BBR-PDT remain unclear and warrant further investigation. The structural modification and targeted delivery of BBR have made it possible to broaden its applications; however, experimental verification is required. Overall, BBR acts as a sensitizer for PDT and has promising development prospects.
RESUMEN
Polygonum multiflorum Thunb. (PM) is a traditional Chinese medicine, commonly used to treat a variety of diseases. However, the hepatotoxicity associated with PM hampers its clinical application and development. In this study, we refined the zebrafish hepatotoxicity model with regard to the following endpoints: liver size, liver gray value, and the area of yolk sac. The levels of alanine aminotransferase, aspartate transaminase, albumin, and microRNAs-122 were evaluated to verify the model. Subsequently, this model was used to screen different extracts, components, and constituents of PM, including 70 % EtOH extracts of PM, four fractions from macroporous resin (components A, B, C, and D), and 19 compounds from component D. We found that emodin, chrysophanol, emodin-8-O-ß-D-glucopyranoside, (cis)-emodin-emodin dianthrones, and (trans)-emodin-emodin dianthrones showed higher hepatotoxicity compared to other components in PM, whereas polyphenols showed lower hepatotoxicity. To the best of our knowledge, this study is the first to identify that dianthrones may account for the hepatotoxicity of PM. We believe that these findings will be helpful in regulating the hepatotoxicity of PM.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fallopia multiflora/química , Extractos Vegetales/toxicidad , Animales , Evaluación Preclínica de Medicamentos , Emodina/toxicidad , Larva/efectos de los fármacos , Medicina Tradicional China , Polifenoles/toxicidad , Pez Cebra/embriologíaRESUMEN
The clinical application of herbal medicines is increasing, but there is still a lack of comprehensive safety data and in-depth research into mechanisms of action. The composition of herbal medicines is complex, with each herb containing a variety of chemical components. Each of these components may affect the activity of metabolizing enzymes, which may lead to herb-drug interactions. It has been reported that the combined use of herbs and drugs can produce some unexpected interactions. Therefore, this study reviews the progress of research on safety issues caused by the effects of herbs on metabolizing enzymes with reference to six categories of drugs, including antithrombotic drugs, non-steroidal anti-inflammatory drugs, anti-diabetic drugs, statins lipid-lowering drugs, immunosuppressants, and antineoplastic drugs. Understanding the effects of herbs on the activity of metabolizing enzymes could help avoid the toxicity and adverse drug reactions resulting from the co-administration of herbs and drugs, and help doctors to reduce the risk of prescription incompatibility.
Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Glutatión Transferasa/metabolismo , Interacciones de Hierba-Droga , Preparaciones de Plantas/farmacocinética , Preparaciones de Plantas/toxicidad , Animales , Humanos , Fitoterapia/efectos adversosRESUMEN
Honokiol, the main bioactive component of Magnolia officinalis, has a variety of pharmacological actions. However, its toxicity has rarely been reported. According to previous studies performed in our laboratory, honokiol microemulsion has embryo developmental toxicity. For further exploration, Zebrafish embryos were exposed to different doses of honokiol microemulsion to record the rates of mortality, malformation, and hatching. We found that high doses of honokiol microemulsion (0.6 and 0.9⯵g/ml) increased mortality, inhibited hatching, caused malformation and reduced swimming activities. The low-dose group (0.15 and 0.30⯵g/ml) had decreased production of reactive oxygen species (ROS), but the high-dose group had inhibited superoxide dismutase (SOD) enzyme activity and increased ROS content. The mRNA expression of sod1, sod2, catalase(cat), and heme oxygenase 1 (ho1) was up-regulated at low doses but down-regulated at high doses. The nuclear factor E2-related factor 2 (Nrf2) mRNA expression increased at low doses but decreased at high doses. After knocking down Nrf2 in zebrafish embryos, the rates of mortality and malformation were markedly increased and the hatching rate was significantly decreased. These results suggest that honokiol has antioxidative effects at low doses but causes embryo-developmental toxicity at high doses, and the Nrf2 gene may play a pivotal role in regulating these processes.
Asunto(s)
Antioxidantes/metabolismo , Compuestos de Bifenilo/toxicidad , Embrión no Mamífero/efectos de los fármacos , Lignanos/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Catalasa/genética , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/anomalías , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Dosificación Letal Mediana , Locomoción/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Natación , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genéticaRESUMEN
OBJECTIVE: To assess the genotoxicity and embryotoxicity of bicyclol methyl ether (BME), the main impurity in bicyclol. METHODS: Five concentrations of BME (0.5, 5, 50, 500 and 5000 µg/plate) were used in the Ames test to detect gene mutation. In the chromosome aberration test, Chinese hamster lung cells were used to detect chromosomal aberration of BME (15, 30, 60, 120 µg/mL) with or without S9 mixture. Embryotoxicity test was also conducted to determine any embryotoxicity of BME (7.5, 22.5, 67.5 µg/L) using zebrafish embryos. RESULTS: No significant differences were observed in the Ames test and the chromosome aberration test in the BME groups compared with the vehicle control group. The zebrafish embryos toxicity test also showed no embryo development toxicity of BME, including hatching rate, body length, pericardial area and yolk sac area. CONCLUSIONS: Bicyclol methyl ether has no genotoxicity in vitro and embryotoxicity in zebrafish embryos, and the impurity in bicyclol is qualified.
Asunto(s)
Compuestos de Bifenilo/toxicidad , Aberraciones Cromosómicas/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Éteres Metílicos/toxicidad , Animales , Cricetinae , Pruebas de Mutagenicidad , Pez CebraRESUMEN
Environmental issues pose huge threats to public health, particularly the damage caused by fine particulate matter (PM2.5). However, the mechanisms of injury require further investigation and medical materials that can protect the lungs from PM2.5 are needed. We have found that Colla corii asini, a traditional Chinese medicine that has long been used to treat various ailments, is a good candidate to serve this purpose. To understand the mechanisms of PM2.5-induced lung toxicity and the protective effects of Colla corii asini, we established a rat model of lung injury via intratracheal instillation of artificial PM2.5 (aPM2.5). Our results demonstrated that Colla corii asini significantly protected against lung function decline and pathologic changes. Inflammation was ameliorated by suppression of Arg-1 to adjust the disturbed metabolic pathways induced by aPM2.5, such as arginine and nitrogen metabolism and aminoacyl-tRNA biosynthesis, for 11 weeks. Our work found that metabolomics was a useful tool that contributed to further understanding of PM2.5-induced respiratory system damage and provided useful information for further pharmacological research on Colla corii asini, which may be valuable for therapeutic intervention.
Asunto(s)
Gelatina/farmacología , Lesión Pulmonar/prevención & control , Pulmón/patología , Medicina Tradicional China , Material Particulado/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/inmunología , Modelos Animales de Enfermedad , Gelatina/administración & dosificación , Pulmón/efectos de los fármacos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Masculino , Metabolómica , Ratas , Ratas Sprague-DawleyRESUMEN
With the rapid development and wide application of traditional Chinese medicine injection (TCMI), a number of adverse events of some TCMIs have incessantly been reported and have drawn broad attention in recent years. Establishing effective and practical analytical methods for safety evaluation and quality control of TCMI can help to improve the safety of TCMIs in clinical applications. In this study, a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method has been developed and validated for the quantitative determination of potentially harmful substance 5,5'-oxydimethylenebis (2-furfural, OMBF) in TCMI samples. Chromatographic separation was performed on a C18 reversed-phase column (150 mm × 2.1 mm, 5 µm) by gradient elution, using methanol-water containing 0.1% formic acid as mobile phase at the flow rate of 0.3 mL/min. MS/MS detection was performed on a triple quadrupole mass spectrometer with positive electrospray ionization in the multiple reaction-monitoring mode. The method was sensitive with a limit of quantification of 0.3 ng/mL and linear over the range of 0.3-30 ng/mL (r=0.9998). Intra- and inter-day precision for analyte was <9.52% RSD with recoveries in the range 88.0-109.67% at three concentration levels. The validated method was successfully applied to quantitatively determine the compound OMBF in TCMIs and glucose injections. Our study indicates that this method is simple, sensitive, practicable and reliable, and could be applied for safety evaluation and quality control of TCMIs and glucose injections.
RESUMEN
BACKGROUND: Tripterygium wilfordii Hook F (TwHF) alone or in combination with methotrexate (MTX) has been shown to be more effective than MTX monotherapy in controlling the manifestations in subjects with disease-modifying antirheumatic drug (DMARD)-naïve active rheumatoid arthritis (RA) over a 6-month period. The long-term impact of these therapies on disease activity and radiographic progression in RA has not been examined. METHODS: Patients with DMARD-naïve RA enrolled in the "Comparison of Tripterygium wilfordii Hook F with methotrexate in the Treatment of Active Rheumatoid Arthritis" (TRIFRA) study were randomly allocated into three arms with TwHF or MTX or the two in combination. Clinical indexes and radiographic data at baseline and year 2 was collected and compared using an intent-to-treat (ITT) and a per-protocol (PP) analysis. Two radiologists blinded to the treatment scored the images independently. RESULTS: Of 207 subjects 109 completed the 2-year follow up. The number of subjects withdrawing from the study and the number adhering to the initial regimens were similar among the three groups (p > = 0.05). In the ITT analysis, proportions of patients reaching American College of Rheumatology 50% (ACR50) response criteria were 46.4%, 58.0% and 50.7% in the MTX, TwHF and MTX + TwHF groups (TwHF vs MTX monotherapy, p = 0.004). Similar patterns were found in ACR20, ACR70, Clinical Disease Activity Index good responses, European League Against Rheumatism good response, remission rate and low disease activity rate at year 2. The results of the PP analysis agreed with those in the ITT analysis. The changes in total Sharp scores and joint erosion and joint space narrowing during the 2 years were associated with changes in disease activity measured by the 28-joint count Disease Activity Score and were comparable among the three groups (p > 0.05). Adverse events were similar in the three treatment groups. CONCLUSIONS: During the 2-year therapy period, TwHF monotherapy was not inferior to MTX monotherapy in controlling disease activity and retarding radiological progression in patients with active RA. TRIAL REGISTRATION: This is a follow-up study. Original trial registration: ClinicalTrials.gov , NCT01613079 . Registered on 4 June 2012.
Asunto(s)
Antirreumáticos/administración & dosificación , Artritis Reumatoide/tratamiento farmacológico , Metotrexato/administración & dosificación , Extractos Vegetales/administración & dosificación , Adulto , Anciano , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , TripterygiumRESUMEN
Polygonum multiflorum Thunb. has been used widely in East Asia in treatment of diseases associated with aging. However, there are many reports referred to the toxicity of P. multiflorum, especially for liver adverse reactions. The toxicity of it is caused by over dosage or by the herb itself remains unclear. The aim of this study was to study the toxicity of different extractions, components and constituents of P. multiflorum, which were assessed in zebrafish embryos. Firstly, the difference of extracting solvent to the toxicity of P. multiflorum was researched to probe the influence of usages to the safety of P. multiflorum. The toxicity of 70% EtOH extract is considerably higher than that of other extracts. Secondly, 70% EtOH extract was subjected to macroporous resin (DM-8) eluting with a gradient of water and EtOH (H2O, 25% EtOH, 40% EtOH and 95% EtOH) to give four components (A-D). The toxicity of the component (D) showed higher than the other components (A-C). Thus, the component (D) was taken more attentions to research. Lastly, study on the chemical constituents of the component (D), 27 compounds, including 7 anthraquinones (1-7), 8 stilbenes (8-15), 7 anthrones (16-22), 3 cinnamic acid amides (23-25), 2 naphthols (26-27) were isolated and assessed in zebrafish embryos. Compounds 1-3, 16-22 and 26-27 showed severe toxicity against the zebrafish embryos while other compounds, such as stilbenes, showed no obvious toxicity.
Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Fallopia multiflora/química , Extractos Vegetales/toxicidad , Pruebas de Toxicidad Aguda , Pez Cebra/embriología , Animales , Notocorda/anomalías , Notocorda/efectos de los fármacos , Notocorda/embriología , Extractos Vegetales/químicaRESUMEN
Biqi capsule is a well-known traditional Chinese medicine formula that has been widely applied for the clinical treatment of such diseases as rheumatoid arthritis, scapulohumeral periarthritis and cervical spondylopathy. However, there is concern regarding the toxicity of Biqi capsule owing to its active ingredients, strychnine and brucine. To investigate the toxicokinetics of strychnine and brucine after oral administration of Biqi capsule to rats, a sensitive and simple rapid-resolution liquid chromatography/tandem mass spectrometry method was developed to determine the levels of strychnine and brucine in rat plasma. Chromatographic separation was performed on a Capcell Pak C18 MG II (3.0 µm, 2.0 × 35 mm) column by gradient elution with acetonitrile and 0.2% formic acid as the mobile phase. The method was validated over the range of 0.25-250 ng/mL for strychnine and 0.025-25 ng/mL for brucine. The intra- and inter-day accuracies of strychnine and brucine in rat plasma were 100.3-106.6 and 90.75-106.1% respectively, and the precisions were within 14.2%. The established method was successfully applied to the toxicokinetic study of strychnine and brucine after single and multiple oral administration of Biqi capsule to male and female rats at 0.4, 0.8 and 1.6 g/kg doses. The results showed different toxicokinetic characteristics in the different groups.
Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Estricnina/análogos & derivados , Estricnina/sangre , Estricnina/farmacocinética , Administración Oral , Animales , Cromatografía Liquida , Medicamentos Herbarios Chinos/farmacocinética , Femenino , Modelos Lineales , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estricnina/toxicidad , Espectrometría de Masas en TándemRESUMEN
Potassium 2-(1-hydroxypentyl)-benzoate (dl-PHPB) is a prodrug of 3-n-butylphthalide (dl-NBP) for treatment of cerebral ischemic stroke in China, which undergoes lactonization to form dl-NBP in plasma. And, the phase II-III clinical trial of dl-PHPB has been approved by China Food and Drug Administration (CFDA) in 2013. In this study, a toxicity and toxicokinetics evaluation of dl-PHPB was performed using beagle dogs at specially high-dose 108 mg/kg/day (65-fold higher than humans at MHRD) for 4 weeks by intravenous administration, with a 3-week recovery period. And the plasma concentrations of dl-PHPB along with its metabolite dl-NBP were determined by HPLC-UV method. The results showed that dl-PHPB was quickly metabolized into dl-NBP, and no significant accumulation was observed. A slight to moderate behavior-associated toxicity was revealed in the process of delivery; and recovered to normal at the end of administration. Changes in the blood hematological profiles included significantly increased NEUT levels and lower LYM% content. Meanwhile, a notable increase in TG content was also observed in the serum biochemical parameters at 4-week post-exposure. These findings were reversible during the recovery period. The information from these studies would be taken into consideration for the interpretation of toxicology findings and provide a reference for clinical safety assessment.
Asunto(s)
Benzoatos/farmacología , Pentanos/farmacología , Potasio/farmacología , Animales , Benzofuranos/administración & dosificación , Benzofuranos/farmacología , China , Perros , Femenino , Humanos , Masculino , Estructura Molecular , ToxicocinéticaRESUMEN
The standard of 5-Hydroxymethylfurfural (5-HMF) existed in dextrose injection as an inevitable by-product during high-temperature setrilization has been included in pharmacopoeias considering its hazardous effects on human health. We found that the concentrations of 5-HMF in some traditional Chinese medicine injections (TCMIs) far exceeded its limit in dextrose injection. Besides, we detected 5, 5'-Oxydimethylenebis (2-furfural) (OMBF) in those TCMIs containing high concentrations of 5-HMF. We investigated the in vivo immunomodulatory effects of 5-HMF and OMBF at three dose levels using the reporter antigen popliteal lymph node assay (RA-PLNA), which allows the straightforward examination and mechanistic study of immunotoxicity of low molecular weight compounds. We found that 5-HMF increased the production of IgG2a and IFN-γ when co-injected with TNP-OVA, indicating its capability of providing a co-stimulatory signal to evoke a typical type-1 immune response. Compared with the 5-HMF, OMBF elevated the production of IgG1, IgG2, IL-4 and IFN-γ in response to both reporter antigens, suggesting that OMBF can act as a neo-antigen or neo-epitope to elicit a mixed type-1 and type-2 immune response. It indicates that both 5-HMF and OMBF have immunosensitizing potential with different mechanisms, and exposure to 5-HMF and OMBF may represent a safety concern for humans.