Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ovarian Res ; 17(1): 25, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279186

RESUMEN

Bushen Tiaoxue Granules (BTG) is an empirical Chinese herbal formula that has been used for the treatment of subfertility. The protective effect of BTG on controlled ovarian hyperstimulation (COH)-induced impaired endometrial receptivity has been reported in our previous study. This study aims to explore the mechanisms of BTG on ameliorating abnormal morphology of endometrium based on network pharmacology. Active compounds of BTG were identified via the traditional Chinese medicine systems pharmacology and UPLC-MS technology. The SwissTargetPrediction platform and HERB database were used to screen out the putative targets of BTG. Potential targets of endometrial dysfunction caused by COH were obtained from three GEO databases. Through the STRING database, the protein-protein interaction was carried out according to the cross-common targets of diseases and drugs. GO terms and KEGG pathways enrichment analyses were conducted via the Metascape database. AutoDock Vina was used for docking validation of the affinity between active compounds and potential targets. Finally, in vivo experiments were used to verify the potential mechanisms derived from network pharmacology study. A total of 141 effective ingredients were obtained from TCMSP and nine of which were verified in UPLC-MS. Six genes were selected through the intersection of 534 disease related genes and 165 drug potential targets. Enrichment analyses showed that BTG might reverse endometrial dysfunction by regulating adherens junction and arachidonic acid metabolism. Hematoxylin-eosin staining revealed that BTG ameliorated the loose and edematous status of endometrial epithelium caused by COH. The protein expression of FOXO1A, ß-Catenin and COX-2 was decreased in the COH group, and was up-regulated by BTG. BTG significantly alleviates the edema of endometrial epithelium caused by COH. The mechanisms may be related to adheren junctions and activation of arachidonic acid metabolism. The potential active compounds quercetin, taxifolin, kaempferol, eriodictyol, and isorhamnetin identified from the BTG exhibit marginal cytotoxicity. Both high and low concentrations of kaempferol, eriodictyol, and taxifolin are capable of effectively ameliorating impaired hESC cellular activity.


Asunto(s)
Quempferoles , Farmacología en Red , Femenino , Humanos , Ácido Araquidónico , Cromatografía Liquida , Espectrometría de Masas en Tándem , Endometrio , Simulación del Acoplamiento Molecular
2.
J Virol ; 96(14): e0047722, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758666

RESUMEN

The mechanisms of colostrum-mediated virus transmission are difficult to elucidate because of the absence of experimental animal models and the difficulties in tissue sample collection from mothers in the peripartum period. Porcine epidemic diarrhea virus (PEDV) is a reemerging enteropathogenic coronavirus that has catastrophic impacts on the global pig industry. PEDV primarily infects neonatal piglets by multiple routes, especially 1- to 2-day-old neonatal piglets. Here, our epidemiological investigation and animal challenge experiments revealed that PEDV could be vertically transmitted from sows to neonatal piglets via colostrum, and CD3+ T cells in the colostrum play an important role in this process. The results showed that PEDV colonizing the intestinal epithelial cells (IECs) of orally immunized infected sows could be transferred to CD3+ T cells located just beneath the IECs. Next, PEDV-carrying CD3+ T cells, with the expression of integrin α4ß7 and CCR10, migrate from the intestine to the mammary gland through blood circulation. Arriving in the mammary gland, PEDV-carrying CD3+ T cells could be transported across mammary epithelial cells (MECs) into the lumen (colostrum), as illustrated by an autotransfusion assay and an MECs/T coculture system. The PEDV-carrying CD3+ T cells in colostrum could be interspersed between IECs of neonatal piglets, causing intestinal infection via cell-to-cell contact. Our study demonstrates for the first time that colostrum-derived CD3+ T cells comprise a potential route for the vertical transmission of PEDV. IMPORTANCE The colostrum represents an important infection route for many viruses. Here, we demonstrate the vertical transmission of porcine epidemic diarrhea virus (PEDV) from sows to neonatal piglets via colostrum. PEDV colonizing the intestinal epithelial cells could transfer the virus to CD3+ T cells located in the sow intestine. The PEDV-carrying CD3+ T cells in the sow intestine, with the expression of integrin α4ß7 and CCR10, arrive at the mammary gland through blood circulation and are transported across mammary epithelial cells into the lumen, finally leading to intestinal infection via cell-to-cell contact in neonatal piglets. Our study not only demonstrates an alternative route of PEDV infection but also provides an animal model of vertical transmission of human infectious disease.


Asunto(s)
Calostro , Infecciones por Coronavirus , Transmisión Vertical de Enfermedad Infecciosa , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Animales Recién Nacidos , Calostro/virología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/veterinaria , Femenino , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Linfocitos T/virología
3.
Poult Sci ; 101(3): 101650, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35121531

RESUMEN

Since numerous natural components in Eucommia ulmoides belong to phytoestrogen, its effect on hens production deserve more attention. To investigate the potential of E. ulmoides extract used as a feed additive, laying performance, egg quality, yolk cholesterol, yolk fatty acids, yolk fatty, yolk volatile components, albumen amino acids, plasma biochemical parameters, intestinal histology, and gut microbiota of hens (n = 120) were determined between basal diet (A) and dietary supplementation low (B), middle (C), and high (D) level E. ulmoides extract for 11 wk. When compared to A group, 2 percentage points elevation in laying rate was observed of D group. Significant up-regulation of immunoglobulin indexes and down-regulation of lipid related indexes in D group were also found if comparison with A group, suggesting that supplementation E. ulmoides extract at a relative high content benefited in immunity enhancing and blood-fat depressing. Meanwhile, obvious variation in albumen amino acids and yolk volatile compounds were inspected as dietary supplementation E. ulmoides extract, especially in D group, implied that the flavor of egg would change under high-level E. ulmoides extract treatment. Besides, villus height and villus height to crypt depth ratio of duodenum, jejunum, and ileum in D group were also significantly higher than that of in A group, indicating high-level E. ulmoides extract contributed to nutrient adsorption via intestinal histology changing. Moreover, the richness, diversity, and composition of gut microbiota in D group also significantly altered with a comparison of A group. These variation caused gut microbiota in D group major enriched in the KEGG pathway of insulin signing pathway, systemic lupus erythematosus, and bacterial invasion of epithelial cells, which were conducive to egg production elevation via facilitating nutrient adsorption, inflammation relieving, blood lipid amelioration, and insulin resistance alleviation. These results indicated that dietary supplementation E. ulmoides extract at high content could serve as a feed additive in the hens industry.


Asunto(s)
Alimentación Animal , Eucommiaceae , Alimentación Animal/análisis , Animales , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Yema de Huevo/química , Extractos Vegetales/farmacología
4.
Chin Med J (Engl) ; 135(4): 456-461, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935692

RESUMEN

BACKGROUND: Previous studies have shown that bufalin exerts antitumor effects through various mechanisms. This study aimed to determine the antineoplastic mechanism of bufalin, an extract of traditional Chinese medicine toad venom, in ovarian cancer. METHODS: The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and colony formation assays were used to investigate the antiproliferative effect of bufalin on the ovarian cancer cell line SK-OV-3. Molecular docking was used to investigate the combination of bufalin and epidermal growth factor receptor (EGFR) protein. Western blotting was performed to detect the expression of EGFR protein and its downstream targets. RESULTS: Bufalin inhibited the proliferation of SK-OV-3 cells in a dose- and time-dependent manner. Bufalin was confirmed to combine with EGFR protein using molecular docking and downregulate expression of EGFR. Bufalin inhibited phosphorylation of EGFR, protein kinase B (AKT), and extracellular signal-regulated kinase (ERK). CONCLUSION: Bufalin suppresses the proliferation of ovarian cancer cells through the EGFR/AKT/ERK signaling pathway.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/farmacología , Apoptosis , Bufanólidos , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB , Humanos , Simulación del Acoplamiento Molecular , Neoplasias Ováricas/tratamiento farmacológico
5.
Cell Prolif ; 50(3)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27910161

RESUMEN

OBJECTIVES: The formation of vascular neointima is mainly related to impairment of the vascular endothelial barrier and abnormal proliferation and migration of smooth muscle cells. The objective of this study was to investigate whether miR-29a exerts any promoting effect on the vascular neointimal hyperplasia and if so, its mechanism. MATERIALS AND METHODS: RT-qPCR was performed to determine expression of miR-29a in vascular smooth muscle cells (VSMC) and vascular neointimal hyperplasia. To further understand its role, we restored its expression in VSMCs by transfection with miR-29a mimics or inhibitors. Effects of miR-29a on cell proliferation were also determined. RESULTS: In this study, we used two kinds of model to observe the role of miR-29a in neointimal hyperplasia induced by carotid ligation or balloon injury. The major findings were that: (i) miR-29a overexpression promoted neointimal hyperplasia induced by carotid ligation; (ii) miR-29a increased proliferation of VSMCs, one aspect of which was by targeting expression of Ying and yang 1 protein (YY1), a negative regulator of Cyclin D1. A further aspect, was by increasing expression of Krüppel-like factor 5, a positive regulator of Cyclin D1, thereby allowing formation a synergistic effect. (iii) Tongxinluo (TXL), a traditional Chinese medicine reduced neointimal formation in ligated vessels by inhibiting VSMC proliferation and migration. CONCLUSIONS: These findings provide a new molecular mechanism of TXL in decreasing neointima hyperplasia.


Asunto(s)
Hiperplasia/genética , MicroARNs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Factor de Transcripción YY1/genética , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Humanos , Hiperplasia/tratamiento farmacológico , Hiperplasia/patología , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , MicroARNs/antagonistas & inhibidores , Músculo Liso Vascular/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Factor de Transcripción YY1/deficiencia , Factor de Transcripción YY1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA