Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 38(2): e23387, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38193649

RESUMEN

Human brain microvascular endothelial cells (HBMVECs) and microglia play critical roles in regulating cerebral homeostasis during ischemic stroke. However, the role of HBMVECs-derived exosomes in microglia polarization after stroke remains unknown. We isolated exosomes (Exos) from oxygen glucose deprivation (OGD)-exposed HBMVECs, before added them into microglia. Microglia polarization markers were tested using RT-qPCR or flow cytometry. Inflammatory cytokines were measured with ELISA. Endothelial cell damage was assessed by cell viability, apoptosis, apoptosis-related proteins, oxidative stress, and angiogenic activity using CCK-8, flow cytometry, western blot, ELISA, and endothelial tube formation assay, respectively. We also established middle cerebral artery occlusion (MCAO) mice model to examine the function of circ_0000495 on stroke in vivo. Our study found that HBMVECs-Exos reduced M2 markers (IL-10, CD163, and CD206), increased M1 markers (TNF-α, IL-1ß, and IL-12), CD86-positive cells, and inflammatory cytokines (TNF-α and IL-1ß), indicating the promotion of microglial M1-polarization. Microglial M1-polarization induced by HBMVECs-Exos reduced viability and promoted apoptosis and oxidative stress, revealing the aggravation of endothelial cell damage. However, circ_0000495 silencing inhibited HBMVECs-Exos-induced alterations. Mechanistically, circ_0000495 adsorbed miR-579-3p to upregulate toll-like receptor 4 (TLR4) in microglia; miR-579-3p suppressed HBMVECs-Exos-induced alterations via declining TLR4; furthermore, Yin Yang 1 (YY1) transcriptionally activated circ_0000495 in HBMVECs. Importantly, circ_0000495 aggravated ischemic brain injury in vivo via activating TLR4/nuclear factor-κB (NF-κB) pathway. Collectively, OGD-treated HBMVECs-Exos transmitted circ_0000495 to regulate miR-579-3p/TLR4/NF-κB axis in microglia, thereby facilitating microglial M1-polarization and endothelial cell damage.


Asunto(s)
Exosomas , MicroARNs , Accidente Cerebrovascular , Animales , Ratones , Humanos , Células Endoteliales , Microglía , Receptor Toll-Like 4/genética , FN-kappa B , Factor de Necrosis Tumoral alfa , Encéfalo , Hipoxia , Oxígeno , Citocinas , MicroARNs/genética
2.
Acta Pharmaceutica Sinica ; (12): 214-224, 2024.
Artículo en Chino | WPRIM | ID: wpr-1005436

RESUMEN

Based on UPLC-Q-orbitrap-MS and biological network analysis tools, the mechanism of Xihuang Pill in improving hyperplasia of mammary glands was systematically analyzed. The rat model of hyperplasia of mammary glands was established by intramuscular injection of estradiol benzoate and progesterone. LC-MS tissue metabolomics was used to explore the key metabolites and metabolic pathways of Xihuang Pill in improving hyperplasia of mammary glands in rat. The network analysis of the key metabolites regulated by Xihuang Pill was carried out by integrating biological network analysis tools, focusing on the key metabolic pathways, and exploring the potential targets of Xihuang Pill to improve hyperplasia of mammary glands. Compared with the control group, there were significant differences in the content of 49 differential metabolites in the tissues of the model group (P < 0.05). Xihuang Pills could significantly call back 17 metabolites such as L-alanine, threonine, indole-3-carboxylic aldehyde, lysine, arginine, alanylleucine, glycyltyrosine, γ-glutamyl leucine, vitamin B3, serine leucine, threonine leucine, isoleucine glutamic acid, γ-glutamyl tyrosine, decanoyl-L-carnitine, uric acid, leucylleucine, S-adenosyl-methionine. Further network analysis and literature research on the key metabolites regulated by Xihuang Pills showed that the AGE-RAGE signaling pathway may be one of the important pathways for Xihuang Pills to improve hyperplasia of mammary glands. STAT3, MAPK1, EGFR, CASP3, CASP8, PRKCA and JUN in the AGE-RAGE signaling pathway may be potential targets for Xihuang Pills to improve hyperplasia of mammary glands. The animal experiment operations involved in this paper follow the provisions of the Animal Ethics Committee of Gansu University of Traditional Chinese Medicine and pass the ethical review of animal experiments (approval number: 2022-705).

3.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5632-5640, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114156

RESUMEN

This study aimed to investigate the mechanism of Xihuang Pills in improving hyperplasia of mammary gland(HMG) in rats based on urine metabolomics using ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS). The HMG rat model was established by intramuscular injection of estradiol benzoate solution(0.5 mg·kg~(-1), 25 days) followed by progesterone injection(5 mg·kg~(-1), 5 days). UPLC-Q-Orbitrap-MS technology was used to establish the endogenous small-molecule metabolic profiles in urine samples of rats in the blank group, the HMG model group, and Xihuang Pills group. Multivariate statistical analysis was performed for pattern recognition, t test and variable importance in the projection(VIP) were used to screen potential biomarkers. The significantly changed differential metabolites were identified using the online database Human Metabolome Database(HMDB). Metabolic pathway enrichment analysis was conducted using the MetaboAnalyst 5.0 database. The results showed that 90 differential metabolites with significant changes(P<0.05) were identified between the blank group and the HMG model group using the HMDB. Among them, 48 metabolites significantly reverted(P<0.05) after administration of Xihuang Pills, which may be related to the regulatory effect of Xihuang Pills. Thirteen metabolic pathways significantly associated with HMG were identified when the differential metabolites were imported into the MetaboAnalyst 5.0 database, and Xihuang Pills could modulate seven of these pathways. These metabolic pathways mainly involved histidine metabolism, arginine and proline metabolism, ß-alanine metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, pyrimidine metabolism, and amino sugar and nucleotide sugar metabolism. This study utilized UPLC-Q-Orbitrap-MS and urine metabolomics technology to analyze the mechanism of Xihuang Pills in improving HMG, laying the foundation for further in-depth research.


Asunto(s)
Metaboloma , Metabolómica , Humanos , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Hiperplasia , Metabolómica/métodos , Biomarcadores/orina
4.
Chemosphere ; 340: 139888, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37604343

RESUMEN

Selenium (Se) can counteract cadmium (Cd) toxicity in wheat, but the molecular mechanism of different Se forms reducing Cd uptake and accumulation in wheat seedlings remain unclear. Here, a hydroponic experiment was conducted to investigate the effects of three Se forms (selenite (Se(IV)), selenate (Se(VI)) and seleno-L-methionine (SeMet)) on Cd2+ influx, Cd subcellular distribution, and Cd accumulation in wheat seedlings, and the underlying molecular mechanisms were investigated through transcriptome analysis. Consequently, Se(IV) and Se(VI) addition significantly reduced root Cd concentration by 74.3% and 80.8%, respectively, and all Se treatments significantly decreased shoot Cd concentration by approximately 34.2%-74.9%, with Se(IV) addition having the most pronounced reducing effect. Transcriptome analysis showed the reduction of Cd accumulation after Se(IV) addition was mainly due to the downregulation of Cd uptake genes. The inhibition of Cd accumulation after Se(VI) addition was not only associated with the downregulation of Cd uptake genes, but also related to the sequestration of Cd in vacuole. For SeMet addition, the reduction of Cd accumulation was mainly related to the sequestration of Cd in vacuole as GSH-Cd. The above findings provide novel insights to understand the effects of different forms of Se on Cd uptake and accumulation and tolerance in wheat.


Asunto(s)
Intoxicación por Cadmio , Selenio , Selenio/farmacología , Cadmio/toxicidad , Triticum/genética , Plantones/genética , Perfilación de la Expresión Génica , Metionina , Racemetionina
5.
Poult Sci ; 102(6): 102638, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37015160

RESUMEN

This experiment was carried out to investigate the mechanism of action of mulberry leaf extract (MLE) in reducing abdominal fat accumulation in female broilers. A total of 192 one-day-old female Arbor Acres (AA) broilers were divided into 4 diet groups, with each group consisting of 8 replicates with 6 birds per replicate. The diets contained a basal diet and 3 test diets with supplementation of 400, 800, or 1,200 MLE mg/kg, respectively. The trial had 2 phases that lasted from 1 to 21 d and from 22 to 56 d, respectively. The growth performance, abdominal fat deposition, fatty acid composition, serum biochemistry and mRNA expression of genes related to fat metabolism in liver were determined. The results showed that, 1) dietary supplementation with MLE had no significant impact on broilers final body weight, average daily gain (ADG), or feed to gain ration (F/G) (P > 0.05), but linearly reduced abdominal fat accumulation in both experimental phases (P < 0.05); 2) the total contents of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), such as palmitoleic acid, oleic acid, and eicosadienoic acid, were increased quadratically as a result of dietary supplements of 400, 800, and 1,200 mg/kg MLE (P < 0.01), while the total contents of saturated fatty acids (SFA), such as teracosanoic acid were decreased (P < 0.01); 3) the addition of 800 or 1,200 MLE mg/kg to the diet linearly reduced total cholesterol (TC) in the serum and liver (P < 0.05). Adenosine-activated protein kinase (AMPK) mRNA expression in the liver was quadratically increased by the addition of 800 or 1,200 MLE mg/kg to the diet (P < 0.05), and the mRNA expression of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), and acetyl-CoA carboxylate), fatty acid synthase (FAS) were linearly decreased (P < 0.05). In conclusion, MLE can be employed as a viable fat loss feed supplement in fast-growing broiler diets since it reduces abdominal fat deposition in female AA broilers via the AMPK/SREBP-1c/ACC signaling pathway. MLE can also be utilized to modify the fatty acid profile in female broilers (AA) at varied inclusion levels.


Asunto(s)
Pollos , Morus , Animales , Femenino , Pollos/fisiología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Quinasa/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Ácidos Grasos Insaturados/metabolismo , Transducción de Señal , Grasa Abdominal/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , ARN Mensajero/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 48(2): 292-299, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725218

RESUMEN

Caused by endocrine disorder, hyperplasia of mammary glands(HMG) tends to occur in the young with increasing incidence, putting patients at the risk of cancer and threatening the health of women. Therefore, the prevention and treatment of HMG is attracting more and more attention. Amid the modernization of traditional Chinese medicine(TCM), many scholars have found that Chinese patent medicine has unique advantages and huge potential in treatment of endocrine disorder. Particularly, Chinese patent medicine with the function of blood-activating and mass-dissipating, such as Xiaojin Pills and Xiaozheng Pills, has been commonly used in clinical treatment of HMG, which features multiple targets, obvious efficacy, small side effect, and ease of taking and carrying around. Clinical studies have found that the combination of Chinese patent medicine with other medicine can not only improve the efficacy and relieve symptoms such as hyperplasia and pain but also reduce the toxic and side effects of western medicine. Therefore, based on precious pharmacological research and clinical research, this study reviewed the mechanisms of blood-activating mass-dissipating Chinese patent medicine alone and in combination with other medicine, such as regulating levels of in vivo hormones and receptors, promoting apoptosis, inhibiting angiogenesis, improving hemorheology indexes, enhancing immunity, and boosting antioxidant ability. In addition, limitations and problems were summarized. Thereby, this study is expected to lay a theoretical basis for the further study and clinical application of blood-activating mass-dissipating Chinese patent medicine alone or in combination with other medicine against HMG.


Asunto(s)
Medicamentos Herbarios Chinos , Glándulas Mamarias Humanas , Humanos , Femenino , Hiperplasia/tratamiento farmacológico , Medicamentos sin Prescripción , Glándulas Mamarias Humanas/patología , Medicina Tradicional China , Hemorreología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
7.
Food Chem ; 404(Pt A): 134591, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36444016

RESUMEN

Hyperlipidemia can directly cause metabolic diseases that seriously endanger disorder and metabolism and gut health. Tea polyphenol (TP) and epigallocatechin gallate (EGCG) was found to improve blood lipid levels and gut microbiota. This study aimed to investigate the effects of TP and EGCG on alleviating hyperlipidemia and liver fat accumulation with physiology, genomics, and metabolomics. Results showed that both TP and EGCG reduced body weight, and TP showed advantages in the decrease of serum cholesterol and triglycerides in hyperlipidemic rats induced by the high-fat diet. Moreover, EGCG may protect liver function via reducing the glycerophospholipids increased by high-fat diet intervention. TP remodeled the gut microbiota composition and enriched the abundance of beneficial bacteria (Bacteroides, Faecalibacterium, Parabacteroides, Akkermansia), and EGCG may improve gut health via promoting the acid-producing bacteria (such as Butyricimonas, Desulfovibrio). The above results provided new insights into the hypolipidemic mechanism of TP and EGCG.


Asunto(s)
Microbioma Gastrointestinal , Hiperlipidemias , Enfermedades Metabólicas , Ratas , Animales , Polifenoles , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/genética , Bacteroidetes , Hígado ,
8.
Artículo en Chino | WPRIM | ID: wpr-970721

RESUMEN

Objective: To investigate the effect of oxidative stress caused by heat exposure on the blood pressure increase of treadmill rats and the intervention of antioxidants. Methods: In June 2021, Twenty-four healthy SD male rats were randomly divided into four groups: normal temperature feeding, normal temperature treadmill, high temperature treadmill and high temperature treadmill supplementation with vitamin C groups, 6 rats in each group. The rats run on the platform in normal temperature or heat exposure environment for 30 min in the morning and in the afternoon daily, 6 days per week. The daily vitamin C supplement dose of high temperature treadmill supplementation with vitamin C group was 10 mg/kg. BP recordings were done at the end of the week. The rat vascular lipofuscin (LF) was detected by ELISA, the rat serum nitric oxide (NO) was detected by nitrate reductase method, the serum malondialdehyde (MDA) was detected by thibabituric acid method, the serum glutathione peroxidase (GPx) and superoxide dismutase (SOD) were detected by chemiluminescence method, and the serum catalase (CAT) was detected by ammonium molybdate method. The total antioxidant capacity (T-AOC) of serum was measured by iron reduction/antioxidant capacity method, and the content of nuclear erythroid 2-related factor 2 (Nrf2) in vascular tissue was measured by Western blot. The intra-group mean was compared by repeated measurement analysis of variance, and the inter-group mean was compared by single-factor analysis of variance and post-event LSD-t test. Results: Compared with the previous time point, the systolic BP and diastolic BP of the high temperature treadmill group were significantly increased at 7, 14 and 21 d, and decreased at 28 d which were higher than the initial level (P<0.05), and the systolic BP and diastolic BP values at each experimental time point were significantly higher than those of normal temperature treadmill group (P<0.001). The changes of thickening of the artery wall, no smoothing of the endodermis and irregular arrangement of muscle cells in high temperature treadmill group were observed. Compared with the normal temperature treadmill group, the content of MDA in serum, and LF in vascular tissue were significantly increased, the activities of SOD, CAT, T-AOC, the content of NO in serum, and the expression of Nrf2 in vascular tissue were significantly decreased in high temperature treadmill group (P<0.05). Compared with the high temperature treadmill group, the systolic BP and diastolic BP values at 7, 14, 21 and 28 d, the content of serum MDA and LF in vascular tissue were significantly decreased, the activities of CAT and T-AOC, and the expression of Nrf2 in vascular tissue significantly increased (P<0.05), the histopathological changes of the artery wall improved in high temperature treadmill supplementation with vitamin C group. Conclusion: Heat exposure has effect on oxidative stress, which may be related to the increase of BP. Vitamin C as an anti-oxidative enhancer can prevent those negative effects, which could alleviate the pathological changes of vessel intima in heat-exposed rats. And the Nrf2 may be a regulated factor to vascular protection.


Asunto(s)
Masculino , Animales , Ratas , Ácido Ascórbico , Antioxidantes/farmacología , Presión Sanguínea , Calor , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Fiebre
9.
Artículo en Chino | WPRIM | ID: wpr-970465

RESUMEN

Caused by endocrine disorder, hyperplasia of mammary glands(HMG) tends to occur in the young with increasing incidence, putting patients at the risk of cancer and threatening the health of women. Therefore, the prevention and treatment of HMG is attracting more and more attention. Amid the modernization of traditional Chinese medicine(TCM), many scholars have found that Chinese patent medicine has unique advantages and huge potential in treatment of endocrine disorder. Particularly, Chinese patent medicine with the function of blood-activating and mass-dissipating, such as Xiaojin Pills and Xiaozheng Pills, has been commonly used in clinical treatment of HMG, which features multiple targets, obvious efficacy, small side effect, and ease of taking and carrying around. Clinical studies have found that the combination of Chinese patent medicine with other medicine can not only improve the efficacy and relieve symptoms such as hyperplasia and pain but also reduce the toxic and side effects of western medicine. Therefore, based on precious pharmacological research and clinical research, this study reviewed the mechanisms of blood-activating mass-dissipating Chinese patent medicine alone and in combination with other medicine, such as regulating levels of in vivo hormones and receptors, promoting apoptosis, inhibiting angiogenesis, improving hemorheology indexes, enhancing immunity, and boosting antioxidant ability. In addition, limitations and problems were summarized. Thereby, this study is expected to lay a theoretical basis for the further study and clinical application of blood-activating mass-dissipating Chinese patent medicine alone or in combination with other medicine against HMG.


Asunto(s)
Humanos , Femenino , Hiperplasia/tratamiento farmacológico , Medicamentos sin Prescripción , Glándulas Mamarias Humanas/patología , Medicina Tradicional China , Hemorreología , Medicamentos Herbarios Chinos/uso terapéutico
10.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6749-6764, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38212035

RESUMEN

In this study, based on network pharmacology and molecular docking method, the mechanism of anti-hyperplasia of mammary glands of Xihuang Pills blood-entering components was explored, and the efficacy and key targets of Xihuang Pills blood-entering components were experimentally verified by MCF-10A proliferation model of human mammary epithelial cells. In order to clarify the material basis and mechanism of Xihuang Pills in realizing anti-hyperplasia of mammary glands, the blood-entering components of Xihuang Pills were qualitatively analyzed by UPLC-Q-TOF-MS, and 22 blood-entering components were identified. By taking the blood-entering components as the research object, the network pharmacology prediction and molecular docking verification were carried out, and finally, three key targets were screened out, namely JAK1, SRC, and CDK1. In vitro experiments show that Xihuang Pills can inhibit the proliferation of MCF-10A cells, promote the apoptosis of MCF-10A cells, and reduce the expression of JAK1, SRC, and CDK1 targets in cells. To sum up, Xihuang Pills can promote the apoptosis of mammary epithelial cells by regulating the expression of JAK1, SRC, and CDK1 and then play an anti-hyperplasia role, which provides an experimental basis for clarifying the material basis of Xihuang Pills for anti-hyperplasia effect.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Humanos , Cromatografía Líquida de Alta Presión , Simulación del Acoplamiento Molecular , Apoptosis , Hiperplasia , Medicamentos Herbarios Chinos/farmacología
11.
Neuropsychiatr Dis Treat ; 18: 2485-2496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36345420

RESUMEN

Purpose: Tryptophan metabolism is involved in the etiology and exacerbation of depressive disorders. Kai-Xin-San (KXS), a traditional Chinese medicine formula, has been widely used to treat depression and modulate serotonin simultaneously, but how it regulates depressive-like behavior by shifting the balance of the tryptophan-serotonin metabolism and kynurenine pathway remains vague. Patients and Methods: Ten participants with mild to moderate depression treated with KXS (KXS preparation) were analyzed in this study. Depression rating scale score and the concentration of serum tryptophan, 5-hydroxytryptophan and kynurenine was measured at baseline and the endpoint of KXS treatment. To explore the specific regulatory mechanism of KXS in tryptophan metabolism, the chronic restraint stress (CRS) was used to induce depressive-like syndrome in rats and the hippocampus level of tryptophan, 5-hydroxytryptophan, kynurenine with downstream metabolites (kynurenic acid, quinolinic acid) and key enzymes (indoleamine 2,3-dioxygenase, kynurenine 3-monooxygenase, kynurenine aminotransferase) were analyzed by liquid chromatography-electros pray ionization tandem mass spectrometry, high performance liquid chromatography and enzyme-linked immunosorbent assay respectively. Results: KXS significantly decreased depression rating scale scores and increased the serum tryptophan and kynurenine concentration in depressive patients compared to baseline. Also, it alleviated the depressive behavior in CRS rats obviously. Comparing with CRS group, KXS increased tryptophan, 5-hydroxytryptophan, kynurenine level in rat hippocampus. Furthermore, in kynurenine pathway, KXS decreased the expression of indoleamine 2,3-dioxygenase, increased kynurenic acid by upregulating the expression of kynurenine aminotransferase while decreased quinolinic acid level in hippocampus, which suggested that KXS more favored improving serotonin pathway, and neuroprotective kynurenic acid branch in the tryptophan metabolism. Conclusion: This is the first tryptophan metabolomic study of patients with depression undergoing KXS treatment. Combining these clinical results with CRS induced rat model studies, it verified that KXS achieves an excellent antidepressant effect and balances tryptophan-kynurenine metabolic pathways by regulating some key metabolic products and enzymes.

12.
Artículo en Inglés | MEDLINE | ID: mdl-35911169

RESUMEN

Objectives: Kaixinsan (KXS), a traditional Chinese medicine formula, has been demonstrated to be effective in the treatment of depression. The present study applied a network pharmacology approach to dig out the new targets and mechanism of action of KXS and the active compounds in the treatment of depression. Methods: A network pharmacology approach based on public databases including ADME (absorption, distribution, metabolism, and excretion) evaluation, targets prediction, construction of networks, and molecule docking was used and validated the predicted new antioxidant targets and mechanisms in vitro. Based on an in vitro experiment, we verified the AKT1/Nrf2 pathway related to the thioredoxin (Trx) antioxidant mechanism. Results: The present study sorted 31 pharmacologically active components (kaempferol, ginsenoside rh2, ginsenoside rh4, stigmasterol, etc.) through the ADME algorithm from KXS. 136 potential molecular targets (AKT1, TNF, IL-1b, JUN, ESR1, NOS3, etc.) were predicted, of which there were 69 targets clearly related to depression. By compound-depression targets (C-DTs) network constructed, and protein-protein interaction networks (PPI) and KEGG pathway enrichment analyzed, we identified active compounds mediating depression-related targets to exert synergism on the predictive AKT1/Nrf2 pathway related to thioredoxin (Trx) antioxidant mechanism and other inflammation-related signaling pathways as well as neurotransmitter related signaling pathways. In the H2O2 induced SH-SY5Y cell damage model, this showed kaempferol and ginsenoside rh2 could enhance the activity of the Trx system by upregulation of AKT1 to activate Nrf2 in vitro. Conclusions: Taken together, by comprehensive systems pharmacology approach analysis, we found that KXS and its active compounds might exhibit antioxidant effects by stimulating the AKT1/Nrf2 pathway in the treatment of depression, which might shed new light on innovative therapeutic tactics for the new aspects for depression in traditional Chinese medicine in future studies.

13.
Bioengineered ; 13(3): 6908-6918, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35235758

RESUMEN

Ischemic stroke is one of the leading causes of morbidity and mortality in humans. Cerebral ischemia-reperfusion (CIR) injury serves as a leading cause of stroke. Schisandra chinensis is a well-known Chinese traditional medicine. In this study, we explored the role of Gomisin J (GJ), a compound of S. chinensis, in CIR using a middle cerebral artery occlusion/reperfusion rat model and the possible mechanisms. We identified that GJ reduced neurological scores, cerebral infarction, and water content in the I/R rat brain. Importantly, GJ rescued I/R treatment-reduced neuron survival in the hippocampus, inhibited apoptosis of ischemic tissues in I/R rats, increased B-cell lymphoma-extra-large (Bcl-XL) expression, and reduced the levels of cleaved caspase-3, Bax, cyclooxygenase-2, nuclear factor kappa-B, and nitric oxide in I/R rat brain tissues. Furthermore, GJ treatment enhanced nuclear factor E2 related factor 2 (Nrf2) translocation, heme oxygenase-1 (HO-1) expression, superoxide dismutase and glutathione peroxidase activities, and glutathione level. Overall, GJ treatment GJ attenuates CIR injury by inducing anti-apoptotic, antioxidant, and anti-inflammatory effects in vivo.


Asunto(s)
Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Apoptosis , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Lignanos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Compuestos Policíclicos , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
14.
Front Pharmacol ; 12: 738235, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630112

RESUMEN

Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.

15.
Chin J Nat Med ; 19(7): 528-535, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34247776

RESUMEN

In this study, three new germacranolide sesquiterpenes (1-3), together with six related known analogues (4-9) were isolated from the whole plant of Carpesium cernuum. Their structures were established by a combination of extensive NMR spectroscopic analysis, HR-ESIMS data, and ECD calculations. The anti-leukemia activities of all compounds towards three cell lines (HEL, KG-1a, and K562) were evaluated in vitro. Compounds 1-3 exhibited moderate cytotoxicity with IC50 values ranging from 1.59 to 5.47 µmol·L-1. Mechanistic studies indicated that 2 induced apoptosis by decreasing anti-apoptotic protein Bcl-2 and activating the caspase family in K562 cells. These results suggest that compound 2 is a potential anti-leukemia agent.


Asunto(s)
Antineoplásicos Fitogénicos , Asteraceae , Sesquiterpenos de Germacrano/farmacología , Antineoplásicos Fitogénicos/farmacología , Asteraceae/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células K562 , Fitoquímicos/farmacología
16.
Curr Pharm Des ; 26(1): 138-159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31840598

RESUMEN

Plants of the genus Vitex (Verbenaceae) are mainly distributed throughout tropical and temperate regions, and many Vitex plants have been traditionally used in folk medicine. Plants of this genus are a rich source of diterpenoids, which not only displayed versatile structural diversity with potential chemotaxonomical significance but also exhibited a wide range of biological activities, mainly including in vitro cytotoxic, antiinflammatory, antimicrobial, hormone level-regulating and antiangiogenic activities. Recently, a series of bioactive diterpenoids, with interesting carbon skeletons, have been reported and gathered considerable interest. This article systematically reviewed diterpenoids isolated from the genus Vitex that appeared in the literature up to December 2018, critically highlighting their structural diversity and pharmacological activities. Up to now, a total of 154 diterpenoids with diverse structures have been isolated and identified from Vitex plants. The authors also summarized the reported structure-activity relationships of those well explored Vitex diterpenoids. Finally, the authors discussed the challenges and potential applications of these diterpenoids in the future.


Asunto(s)
Diterpenos , Fitoquímicos/farmacología , Vitex/química , Diterpenos/química , Diterpenos/farmacología , Fitoquímicos/química , Relación Estructura-Actividad
17.
Phytomedicine ; 58: 152825, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30831463

RESUMEN

BACKGROUND: The seeds of Vitex negundo, with rich lignans metabolites, have been widely used as a traditional Chinese medicine and Ayurvedic herbal medicine for the treatment of rheumatism and joint inflammation. The total lignans of Vitex negundo seeds (TOV) were suggested to play an important role in the treatment of arthritis. PURPOSE: The aim of the study was designed to investigate the anti-arthritic effects of TOV on collagen-induced arthritis (CIA) in rats as well as its possible mechanisms. METHODS: TOV was prepared by combined macroporous resin and polyamide column chromatography, and constituents of TOV were analyzed by HPLC. CIA model in rats was established by immunization with chicken type II collagen and then the rats were intragastrically administrated with TOV for 30 days. Rat arthritis was evaluated by measurements of hind paw edema, arthritis index score, weight growth and indices of thymus and spleen, and by histological examination. Levels of serum MMP-2, MMP-3, MMP-9, IL-1ß, IL-6, IL-8, IL-10, IL-17A and TNF-α were also examined. In addition, the expression of COX-2, iNOS and IκB, p-IκB in synovial tissues was evaluated by western blotting. The analgesic and anti-inflammatory effects of TOV were also evaluated in acetic acid-induced writhing and xylene-induced ear edema in mice, respectively. In addition, acute toxicity test was employed to preliminarily assess the safety of TOV. RESULTS: TOV significantly inhibited the paw edema and decreased the arthritis index, with no influence on the body weight and the indices of thymus and spleen of CIA rats. Meanwhile, TOV dose-dependently reduced the infiltration of inflammatory cells, synovial hyperplasia and attenuated cartilage damage. Additionally, the serum levels of IL-1ß, IL-6, IL-8, IL-17A, TNF-α, MMP-3 and MMP-9 were markedly decreased, while the level of serum IL-10 was increased in TOV-treated rats. The significant reduction of the expression of COX-2, iNOS and p-IκB and the notable increase of IκB in synovial tissues were also observed in TOV-treated animals. TOV also significantly inhibited acetic acid-induced writhing and decreased xylene-induced ear edema in mice. Finally, the maximal tolerable dose (MTD) of TOV was determined to be 16.0 g/kg. CONCLUSION: These results suggest that TOV has significant anti-arthritic effects on collagen-induced arthritis in rats, which may be attributed to the inhibition of the levels of IL-1ß, IL-6, IL-8, IL-17A, TNF-α, MMP-3 and MMP-9, and the increase of IL-10 in serum as well as down-regulation of the protein expression of COX-2 and iNOS in synovial tissues via suppressing the phosphorylation and degradation of IκB. Due to its high efficacy and safety, TOV can be regarded as a promising drug candidate for rheumatoid arthritis treatment.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Edema/tratamiento farmacológico , Lignanos/farmacología , Medicina Tradicional China , Vitex/química , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/patología , Pollos , Colágeno Tipo II/efectos adversos , Ciclooxigenasa 2/metabolismo , Citocinas/sangre , Edema/patología , Femenino , Masculino , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos ICR , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Ratas Sprague-Dawley , Semillas/química , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología
18.
Plant Dis ; 102(10): 1958-1964, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30109976

RESUMEN

Potato (Solanum tuberosum L.) is one of the most important staple foods in many parts of the world including China. In recent years, Verticillium wilt has become a severe threat to potato production in China. During 2015 to 2016, 287 samples of symptomatic potato plants were collected from 15 counties in five provinces from northern China. One hundred and eighty-seven Verticillium-like colonies were isolated from these samples and identified to species based on cultural and morphological characteristics, and multigene phylogeny based on the partial sequences of actin (ACT), elongation factor 1-alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GPD), and tryptophan synthase (TS) genes. A consensus-rooted most parsimonious phylogenetic tree was generated from the data. One hundred and fifteen isolates comprising 61.5% of the total were identified as Verticillium dahliae, and the remaining 38.5% of the isolates were identified as V. nonalfalfae. V. dahliae was widely distributed in Shaanxi (84.1%), Inner Mongolia (76.7%), Gansu (12.8%), and Qinghai (100%, representing a single isolate). V. dahliae was not recovered from the samples in Ningxia. V. nonalfalfae dominated the collections from Gansu (87.2%) and Ningxia (100%) but was also recovered from Shaanxi (15.9%) and Inner Mongolia (23.3%) at lower frequencies. Neither V. albo-atrum nor V. alfalfae was recovered from the sampled areas. The V. nonalfalfae isolates were predominantly isolated from the samples collected from altitudes above 1,800 m, and in contrast, V. dahliae isolates were mainly recovered from fields sampled below 1,800 m. The optimum temperature for the colony growth of V. nonalfalfae was lower (20°C) than that for V. dahliae (25°C). Pathogenicity tests demonstrated that V. dahliae and V. nonalfalfae were both pathogens of potato Verticillium wilt, with V. dahliae isolates exhibiting higher virulence than V. nonalfalfae isolates regardless of the collection area of the species. This is the first documentation of V. nonalfalfae infecting S. tuberosum in China and the higher altitudes associated with infections of V. nonalfalfae anywhere in the world.


Asunto(s)
Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Verticillium/clasificación , China , ADN de Hongos/genética , Filogenia , Verticillium/genética , Verticillium/fisiología
19.
Fitoterapia ; 127: 362-366, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29626624

RESUMEN

Chemical investigation on the solid rice culture of Trichoderma atroviride S361, an endophyte isolated from Cephalotaxus fortunei, has afforded a pair of novel N-furanone amide enantiomers, (-)-trichodermadione A (1a) and (+)-trichodermadione A (1b), and a new cyclohexenone sesquiterpenoid, trichodermadione B (2), together with six known secondary metabolites. Chiral separation of compound 1 was successfully performed on a Lux Cellulose-2 column. Their structures were elucidated by detailed spectroscopic analyses on the basis of NMR, HRMS, and ECD data, and the absolute configurations of the new compounds were determined by computational analyses of their electronic circular dichroism (ECD) spectra and Snatzke's method. Compounds 1a, 1b and 2 were also evaluated for their cytotoxicity against DU145 and PC3 cell lines, as well as inhibitory effects against the production of NO in LPS-stimulated RAW264.7 cells.


Asunto(s)
Cephalotaxus/microbiología , Trichoderma/química , Animales , Línea Celular Tumoral , Endófitos/química , Humanos , Ratones , Estructura Molecular , Células RAW 264.7
20.
Life Sci ; 183: 45-49, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28663065

RESUMEN

AIMS: The present study was carried out to understand the therapeutic effect of curcumin (CUR) against stroke in the experimental animal model. The study investigates the healing effect of CUR on mitochondrial dysfunction and inflammation. MATERIALS AND METHODS: Male albino, Wistar strain rats were used for the induction of middle cerebral artery occlusion (MCAO), and reperfusion. Enzyme-linked immunosorbent assay (ELISA) was used for the determination of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in the brain region. Western blot analysis was used to determine the protein expression levels of Bax, Bcl-2, p53, and Sirt1. KEY FINDINGS: The water level was determined in brain region by using standard method. Experimental results indicated that the use of CUR significantly reduced brain edema and water content. IL-6 and TNF-α were significantly reduced in the brain region following use of CUR. Mitochondrial membrane potential (MMP) also reduced significantly after CUR treatment. Protein expression of p53 and Bax were significantly reduced, whereas Bcl-2 and Sirt1 were increased following CUR treatment. SIGNIFICANCE: Taking all these data together, it is suggested that the use of CUR may be a potential therapeutic agent for the treatment of stroke.


Asunto(s)
Edema Encefálico/tratamiento farmacológico , Curcumina/farmacología , Inflamación/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Accidente Cerebrovascular/prevención & control , Animales , Edema Encefálico/patología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica/efectos de los fármacos , Infarto de la Arteria Cerebral Media , Inflamación/patología , Interleucina-6/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA