Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121766, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35988468

RESUMEN

Essential oil distilled from Melaleuca alternifolialeaves, commonly known as tea tree oil, is well known for its biological activity, principally its antimicrobial properties. However, many samples are adulterated with other, cheaper essential oils such as eucalyptus oil. Current methods of detecting such adulteration are costly and time-consuming, making them unsuitable for rapid authentication screening. This study investigated the use of mid-infrared (MIR) spectroscopy for detecting and quantifying the level of eucalyptus oil adulteration in spiked samples of pure Australian tea tree oil. To confirm the authenticity of the tea tree oil samples, GC-MS analysis was used to profile 37 of the main volatile constituents present, demonstrating that the samples conformed to ISO specifications. Three chemometric regression techniques (PLSR, PCR and SVR) were trialled on the MIR spectra, along with a variety of pre-processing techniques. The best-performing full-wavelength PLSR model showed excellent prediction of eucalyptus oil content, with an R2CV of 0.999 and RMSECV of 1.08 % v/v. The RMSECV could be further improved to 0.82 % v/v through a moving window wavenumber optimisation process. The results suggest that MIR spectroscopy combined with PLSR can be used to predict eucalyptus oil adulteration in Australian tea tree oil samples with a high level of accuracy.


Asunto(s)
Melaleuca , Aceites Volátiles , Aceite de Árbol de Té , Australia , Aceite de Eucalipto , Melaleuca/química , Aceites Volátiles/química , Espectrofotometría Infrarroja , Aceite de Árbol de Té/química
2.
Phytother Res ; 35(7): 3484-3508, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33615599

RESUMEN

Phenolic acid and flavonoid glycosides form a varied class of naturally occurring compounds, characterised by high polarity-resulting from the glycone moiety-and the presence of multiple phenol functionalities, which often leads to strong antioxidant activity. Phenolic glycosides, and in particular flavonoid glycosides, may possess strong bioactive properties with broad spectrum activity. This systematic literature review provides a detailed overview of 28 studies examining the biological activity of phenolic and flavonoid glycosides from plant sources, highlighting the potential of these compounds as therapeutic agents. The activity of glycosides depends upon the biological activity type, identity of the aglycone and the identity and specific location of the glycone moiety. From studies reporting the activity of both glycosides and their respective aglycones, phenolic glycosides appear to generally be a storage/reserve pool of precursors of more bioactive compounds. The glycosylated compounds are likely to be more bioavailable compared to their aglycone forms, due to the presence of the sugar moieties. Hydrolysis of the glycoside in the in vivo environment would release the free aglycone, potentiating their biological activity. However, further high-quality studies are needed to firmly establish the clinical efficacy of glycosides from many of the plant species studied.


Asunto(s)
Flavonoides , Glicósidos , Fenoles , Plantas Medicinales/química , Flavonoides/farmacología , Glicósidos/farmacología , Fenoles/farmacología
3.
J Ethnopharmacol ; 268: 113580, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33189842

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Numerous common pharmaceuticals, including anti-cancer, antiviral and antidiabetic drugs, are derived from traditional plant-derived medicines. With approximately 25,000 species of flora occurring in Australia that are adapted to the harsh environment, there is a plethora of novel compounds awaiting research in the context of their medicinal properties. Anecdotal accounts of plant-based medicines used by the Australian Aboriginal and Torres Strait Islander peoples clearly illustrates high therapeutic activity. AIM: This review aims to demonstrate the medicinal potentials of selected native Australian plants based on scientific data. Furthermore, it is anticipated that work presented here will contribute towards enhancing our knowledge of native plants from Australia, particularly in the prevention and potential treatment of disease types such as cancer, microbial and viral infections, and diabetes. This is not meant to be a comprehensive study, rather it is meant as an overview to stimulate future research in this field. METHODS: The EBSCOhost platform which included PubMed, SciFinder, Web of Knowledge, Scopus, and ScienceDirect databases were searched for papers using the keywords: medicinal plants, antioxidative, antimicrobial, antibacterial, anticancer, anti-tumor, antiviral or antidiabetic, as well as Australian, native, traditional and plants. The selection criteria for including studies were restricted to articles on plants used in traditional remedies which showed antioxidative potential and therapeutic properties such as anticancer, antimicrobial, antiviral and antidiabetic activity. RESULTS: Some plants identified in this review which showed high Total Phenolic Content (TPC) and antioxidative capacity, and hence prominent bioactivity, included Tasmannia lanceolata (Poir.) A.C. Sm., Terminalia ferdinandiana Exell, Eucalyptus species, Syzygium species, Backhousia citriodora F.Muell., Petalostigma species, Acacia species, Melaleuca alternifolia (Maiden & Betche) Cheel, Eremophila species, Prostanthera rotundifolia R.Br., Scaevola spinescens R. Br. and Pittosporum angustifolium Lodd. The majority of studies found polar compounds such as caffeic acid, coumaric acid, chlorogenic acid, quercetin, anthocyanins, hesperidin, kaempferol, catechin, ellagic acid and saponins to be the active components responsible for the therapeutic effects. Additionally, mid to non-polar volatile organic compounds such as meroterpenes (serrulatanes and nerol cinnamates), monoterpenes (1,8-cineole and myodesert-1-ene), sesquiterpenes, diterpenes and triterpenes, that are known only in Australian plants, have also shown therapeutic properties related to traditional medicine. CONCLUSION: Australian plants express a diverse range of previously undescribed metabolites that have not been given full in vitro assessment for human health potential. This review has included a limited number of plant species of ethnomedicinal significance; hundreds of plants remain in need of exploration and detailed study. Future more elaborate studies are therefore required to screen out and purify lead bioactive compounds against numerous other disease types. This will not only improve our knowledge on the phytochemistry of Australian native flora, but also provide a platform to understand their health-promoting and bioactive effects for pharmaceutical interventions, nutraceuticals, cosmetics, and as functional foods. Finally, plant-derived natural compounds (phytochemicals), as well as plant-based traditional remedies, are significant sources for latent and novel drugs against diseases. Extensive investigation of native medicinal plants may well hold the key to novel drug discoveries.


Asunto(s)
Antioxidantes/uso terapéutico , Etnofarmacología/métodos , Medicina Tradicional/métodos , Fitoquímicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Plantas Medicinales , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Australia/etnología , Humanos , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología
4.
Virus Res ; 284: 197989, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32360300

RESUMEN

Coronaviruses are responsible for a growing economic, social and mortality burden, as the causative agent of diseases such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), avian infectious bronchitis virus (IBV) and COVID-19. However, there is a lack of effective antiviral agents for many coronavirus strains. Naturally existing compounds provide a wealth of chemical diversity, including antiviral activity, and thus may have utility as therapeutic agents against coronaviral infections. The PubMed database was searched for papers including the keywords coronavirus, SARS or MERS, as well as traditional medicine, herbal, remedy or plants, with 55 primary research articles identified. The overwhelming majority of publications focussed on polar compounds. Compounds that show promise for the inhibition of coronavirus in humans include scutellarein, silvestrol, tryptanthrin, saikosaponin B2, quercetin, myricetin, caffeic acid, psoralidin, isobavachalcone, and lectins such as griffithsin. Other compounds such as lycorine may be suitable if a therapeutic level of antiviral activity can be achieved without exceeding toxic plasma concentrations. It was noted that the most promising small molecules identified as coronavirus inhibitors contained a conjugated fused ring structure with the majority being classified as being polyphenols.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Animales , COVID-19 , Coronavirus Felino/efectos de los fármacos , Humanos , Virus de la Bronquitis Infecciosa/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Pandemias , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , SARS-CoV-2
5.
Complement Ther Med ; 49: 102294, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32147039

RESUMEN

OBJECTIVES: The aim of this research was to review the literature on Alzheimer's disease (AD) with a focus on polyphenolics as antioxidant therapeutics. DESIGN: This review included a search of the literature up to and including September 2019 in PubMed and MEDLINE databases using search terms that included: Alzheimer's Disease, Aß peptide, tau, oxidative stress, redox, oxidation, therapeutic, antioxidant, natural therapy, polyphenol. Any review articles, case studies, research reports and articles in English were identified and subsequently interrogated. Citations within relevant articles were also examined for consideration in this review. RESULTS: Alzheimer's disease is a neurodegenerative disorder that is clinically characterised by the progressive deterioration of cognitive functions and drastic changes in behaviour and personality. Due to the significant presence of oxidative damage associated with abnormal Aß accumulation and neurofibrillary tangle deposition in AD patients' brains, antioxidant drug therapy has been investigated as potential AD treatment. In particular, naturally occurring compounds, such as plant polyphenols, have been suggested to have potential neuroprotective effects against AD due to their diverse array of physiological actions, which includes potent antioxidant effects. CONCLUSIONS: The impact of oxidative stress and various mechanisms of pathogenesis in AD pathophysiology was demonstrated along with the therapeutic potential of emergent antioxidant drugs to address such mechanism of oxidation.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Polifenoles/uso terapéutico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA