Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 46(1): 245-246, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814831

Asunto(s)
Cuerpo Estriado , Tálamo
2.
Neuropsychopharmacology ; 45(9): 1454-1462, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31995814

RESUMEN

Dorsal striatal manipulations including stimulation of dopamine release and activation of medium spiny neurons (MSNs) are sufficient to drive reinforcement-based learning. Glutamatergic innervation of the striatum by the cortex and thalamus is a critical determinant of MSN activity and local regulation of dopamine release. However, the relationship between striatal glutamatergic afferents and behavioral reinforcement is not well understood. We evaluated the reinforcing properties of optogenetic stimulation of thalamostriatal terminals, which are associated with vesicular glutamate transporter 2 (Vglut2) expression, in the dorsomedial striatum (DMS), a region implicated in goal-directed behaviors. In mice expressing channelrhodopsin-2 (ChR2) under control of the Vglut2 promoter, optical stimulation of the DMS reinforced operant lever-pressing behavior. Mice also acquired operant self-stimulation of thalamostriatal terminals when ChR2 expression was virally targeted to the intralaminar thalamus. Stimulation trains that supported operant responding evoked dopamine release in the DMS and excitatory postsynaptic currents in DMS MSNs. Our previous work demonstrated that the presynaptic G protein-coupled receptor metabotropic glutamate receptor 2 (mGlu2) robustly inhibits glutamate and dopamine release induced by activation of thalamostriatal afferents. Thus, we examined the regulation of thalamostriatal self-stimulation by mGlu2. Administration of an mGlu2/3 agonist or an mGlu2-selective positive allosteric modulator reduced self-stimulation. Conversely, blockade of these receptors increased thalamostriatal self-stimulation, suggesting that endogenous activation of these receptors negatively modulates the reinforcing properties of thalamostriatal activity. These findings demonstrate that stimulation of thalamic terminals in the DMS is sufficient to reinforce a self-initiated action, and that thalamostriatal reinforcement is constrained by mGlu2 activation.


Asunto(s)
Cuerpo Estriado , Receptores de Glutamato Metabotrópico , Animales , Cuerpo Estriado/metabolismo , Ratones , Tálamo/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
3.
Neuropharmacology ; 117: 114-123, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28159646

RESUMEN

The striatum plays critical roles in action control and cognition, and activity of striatal neurons is driven by glutamatergic input. Inhibition of glutamatergic inputs to projection neurons and interneurons of the striatum by presynaptic G protein-coupled receptors (GPCRs) stands to modulate striatal output and striatum-dependent behaviors. Despite knowledge that a substantial number of glutamatergic inputs to striatal neurons originate in the thalamus, most electrophysiological studies assessing GPCR modulation do not differentiate between effects on corticostriatal and thalamostriatal transmission, and synaptic inhibition is frequently assumed to be mediated by activation of GPCRs on corticostriatal terminals. We used optogenetic techniques and recently-discovered pharmacological tools to dissect the effects of a prominent presynaptic GPCR, metabotropic glutamate receptor 2 (mGlu2), on corticostriatal vs. thalamostriatal transmission. We found that an agonist of mGlu2 and mGlu3 induces long-term depression (LTD) at synapses onto MSNs from both the cortex and the thalamus. Thalamostriatal LTD is selectively blocked by an mGlu2-selective negative allosteric modulator and reversed by application of an antagonist following LTD induction. Activation of mGlu2/3 also induces LTD of thalamostriatal transmission in striatal cholinergic interneurons (CINs), and pharmacological activation of mGlu2/3 or selective activation of mGlu2 inhibits CIN-mediated dopamine release evoked by selective stimulation of thalamostriatal inputs. Thus, mGlu2 activation exerts effects on striatal physiology that extend beyond modulation of corticostriatal synapses, and has the potential to influence cognition and striatum-related disorders via inhibition of thalamus-derived glutamate and dopamine release.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Tálamo/fisiología , Animales , Neuronas Colinérgicas/fisiología , Interneuronas/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA