Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Biol ; 20(1): 261, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36424632

RESUMEN

BACKGROUND: Folate is an essential B-group vitamin and a key methyl donor with important biological functions including DNA methylation regulation. Normal neurodevelopment and physiology are sensitive to the cellular folate levels. Either deficiency or excess of folate may lead to neurological disorders. Recently, folate has been linked to tRNA cytosine-5 methylation (m5C) and translation in mammalian mitochondria. However, the influence of folate intake on neuronal mRNA m5C modification and translation remains largely unknown. Here, we provide transcriptome-wide landscapes of m5C modification in poly(A)-enriched RNAs together with mRNA transcription and translation profiles for mouse neural stem cells (NSCs) cultured in three different concentrations of folate. RESULTS: NSCs cultured in three different concentrations of folate showed distinct mRNA methylation profiles. Despite uncovering only a few differentially expressed genes, hundreds of differentially translated genes were identified in NSCs with folate deficiency or supplementation. The differentially translated genes induced by low folate are associated with cytoplasmic translation and mitochondrial function, while the differentially translated genes induced by high folate are associated with increased neural stem cell proliferation. Interestingly, compared to total mRNAs, polysome mRNAs contained high levels of m5C. Furthermore, an integrative analysis indicated a transcript-specific relationship between RNA m5C methylation and mRNA translation efficiency. CONCLUSIONS: Altogether, our study reports a transcriptome-wide influence of folate on mRNA m5C methylation and translation in NSCs and reveals a potential link between mRNA m5C methylation and mRNA translation.


Asunto(s)
Ácido Fólico , Células-Madre Neurales , Ratones , Animales , ARN , Células-Madre Neurales/metabolismo , Metilación de ADN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/genética
2.
Surg Neurol Int ; 12: 515, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754565

RESUMEN

BACKGROUND: Complex spine surgery predisposes patients to substantial levels of blood loss, which can increase the risk of surgical morbidity and mortality. CASE DESCRIPTION: A 29-year-old achondroplastic male required thoracolumbar deformity correction. However, he refused potential allogeneic blood transfusions for religious reasons. He, therefore, underwent pre-operative autologous blood donation and consented to the use of the intraoperative cell salvage device. Immediately prior to the incision, he underwent acute normovolemic hemodilution. Throughout the case, we additionally utilized meticulous hemostasis. Postoperatively, he was supplemented with iron and erythropoietin and recovered well. When he required a revision procedure 3 months later, similar strategies were successfully employed. CONCLUSION: Numerous strategies exist pre-operatively, intraoperatively, and post-operatively to optimize blood loss management for patients who refuse blood transfusions but warrant major spinal deformity surgery.

3.
Psychoneuroendocrinology ; 62: 252-64, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26356038

RESUMEN

Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats.


Asunto(s)
Conducta Animal/fisiología , Depresión/metabolismo , Carbohidratos de la Dieta/administración & dosificación , Fructosa/administración & dosificación , Hipotálamo/metabolismo , Transcriptoma , Animales , Depresión/fisiopatología , Sistema Hipotálamo-Hipofisario/fisiopatología , Masculino , Sistema Hipófiso-Suprarrenal/fisiopatología , Ratas , Ratas Wistar , Maduración Sexual/fisiología
4.
PLoS One ; 9(6): e97897, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24887420

RESUMEN

This study examines the role of s-nitrosylation in the growth of ovarian cancer using cell culture based and in vivo approaches. Using the nitrosylating agent, S-nitrosoglutathione (GSNO), a physiological nitric oxide molecule, we show that GSNO treatment inhibited proliferation of chemoresponsive and chemoresistant ovarian cancer cell lines (A2780, C200, SKVO3, ID8, OVCAR3, OVCAR4, OVCAR5, OVCAR7, OVCAR8, OVCAR10, PE01 and PE04) in a dose dependent manner. GSNO treatment abrogated growth factor (HB-EGF) induced signal transduction including phosphorylation of Akt, p42/44 and STAT3, which are known to play critical roles in ovarian cancer growth and progression. To examine the therapeutic potential of GSNO in vivo, nude mice bearing intra-peritoneal xenografts of human A2780 ovarian carcinoma cell line (2 × 10(6)) were orally administered GSNO at the dose of 1 mg/kg body weight. Daily oral administration of GSNO significantly attenuated tumor mass (p<0.001) in the peritoneal cavity compared to vehicle (phosphate buffered saline) treated group at 4 weeks. GSNO also potentiated cisplatin mediated tumor toxicity in an A2780 ovarian carcinoma nude mouse model. GSNO's nitrosylating ability was reflected in the induced nitrosylation of various known proteins including NFκB p65, Akt and EGFR. As a novel finding, we observed that GSNO also induced nitrosylation with inverse relationship at tyrosine 705 phosphorylation of STAT3, an established player in chemoresistance and cell proliferation in ovarian cancer and in cancer in general. Overall, our study underlines the significance of S-nitrosylation of key cancer promoting proteins in modulating ovarian cancer and proposes the therapeutic potential of nitrosylating agents (like GSNO) for the treatment of ovarian cancer alone or in combination with chemotherapeutic drugs.


Asunto(s)
Neoplasias Ováricas/tratamiento farmacológico , S-Nitrosoglutatión/uso terapéutico , Administración Oral , Animales , Biotina/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , ADN/metabolismo , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Desnudos , Invasividad Neoplásica , Nitrosación/efectos de los fármacos , Neoplasias Ováricas/patología , Unión Proteica/efectos de los fármacos , S-Nitrosoglutatión/administración & dosificación , S-Nitrosoglutatión/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayo de Tumor de Célula Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA