Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Ethnopharmacol ; 325: 117866, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38350504

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gentiana kurroo Royle is a medicinal plant mentioned as Traymana in Ayurveda. In the folklore, it is used to cure fever, stomach ache, skin diseases and liver disorders. However, limited reports are available on the therapeutic potential of Gentiana kurroo Royle against alcohol-induced liver damage. AIM OF THE STUDY: To assess the effectiveness of the hydroethanolic extract of Gentiana kurroo Royle rhizome (GKRE) against alcohol-induced liver injury and explore the mechanism of action. MATERIALS AND METHODS: GKRE was characterized using UHPLC-QTOF-MS/MS. The binding affinity of the identified compound was studied in silico. In vitro studies were performed in the Huh-7 cell line. An acute oral toxicity study (2 g/kg BW) of GKRE was done in rats following OECD 420 guidelines. In the efficacy study, rats were treated with 50% ethanol (5 mL/kg BW, orally) for 4 weeks, followed by a single intraperitoneal dose of CCl4 (30%; 1 mL/kg BW) to induce liver injury. After 4th week, the rats were treated with GKRE at 100, 200 and 400 mg/kg BW doses for the next fifteen days. The biochemical and antioxidant parameters were analyzed using commercial kits and a biochemistry analyzer. Histopathology, gene and protein expressions were studied using qRT PCR and western blotting. RESULTS: Thirteen compounds were detected in GKRE. Few compounds showed a strong interaction with the fibrotic and inflammatory proteins in silico. GKRE reduced (p < 0.05) the ethanol-induced ROS production and inflammation in Huh-7 cells. The acute oral toxicity study revealed no adverse effect of GKRE in rats at 2 g/kg BW. GKRE improved (p < 0.05) the body and liver weights in ethanol-treated rats. GKRE improved (p < 0.05) the mRNA levels of ADH, SREBP1c and mitochondrial biogenesis genes in the liver tissues. GKRE also improved (p < 0.05) the liver damage markers, lipid peroxidation and levels of antioxidant enzymes in the liver. A reduced severity (p < 0.05) of pathological changes, fibrotic tissue deposition and caspase 3/7 activity were observed in the liver tissues of GKRE-treated rats. Further, GKRE downregulated (p < 0.05) the expression of fibrotic (TGFß, αSMA and SMADs) and inflammatory markers (TNFα, IL6, IL1ß and NFκB) in the liver. CONCLUSION: GKRE showed efficacy against alcohol-induced liver damage by inhibiting oxidative stress, apoptosis, inflammation and fibrogenesis in the liver.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Gentiana , Hepatopatías Alcohólicas , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Etanol/toxicidad , Gentiana/química , Rizoma/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Estrés Oxidativo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado , Hepatopatías Alcohólicas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
2.
Food Res Int ; 164: 112434, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36738001

RESUMEN

Ferula assa-foetida is an important species of the genus Ferula, best known for its oleo-gum resin, mainly used as a flavoring agent. Ferula jaeschkeana is another Himalayan medicinal plant of this genus, known for its contraceptive effect but not used in food applications. This study aimed to do a detailed phytochemical analysis of F. assa-foetida growing under controlled conditions in India using GC-MS/headspace and UHPLC-PDA-QTOF-IMS. Further, a comparative analysis of F. assa-foetida was performed with F. jaeschkeana (collected from its natural habitat) and commercial samples of F. assa-foetida oleo-gum resin (collected from the local market). UHPLC-QTOF-IMS profiling of F. assa-foetida led to the identification of foetisulfide C, assafoetidnol A, gumosin, flabellilobin (A/B), and foetisulfide A. In total, 141 metabolites were identified, including vitamins, nucleosides, sulfur compounds, flavonoids, sugars derivatives, and others, using METLIN database. Serine, arginine, asparagine, isoleucine, and phenylalanine were major amino acids quantified among the samples for the nutritional aspect. Characteristic sulfurous compounds (n-propyl-sec-butyl disulfide, trans-propenyl-sec-butyl disulfide, cis-propenyl-sec-butyl disulfide, and bis[1-(methylthio)propyl] disulfide) were identified in all samples except F. jaeschkeana. PCA and cluster analysis showed a significant difference in the volatile constituents of rhizomes of both species. Metabolomics studies also revealed the association of sesquiterpenoid and triterpenoid biosynthesis, phenylpropanoid, flavon, and flavanol biosynthesis. The current study demonstrates, "why only F. assa-foetida is used in culinary applications instead of F. jaeschkeana"?


Asunto(s)
Ferula , Ferula/química , Cromatografía de Gases y Espectrometría de Masas , Cromatografía Líquida de Alta Presión , Fitoquímicos , Compuestos de Azufre , Resinas de Plantas/química , Disulfuros
3.
Life Sci ; 316: 121437, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702203

RESUMEN

Obesity is an epidemic and a growing public health concern worldwide. It is one of the significant risk factors for developing chronic kidney disease. In the present study, we evaluated the preventive effect of green tea catechins (GTC) against obesity-induced kidney damage and revealed the underlying molecular mechanism of action. Various green tea catechins were quantified in the catechins-rich fraction using HPLC. In vitro, the palmitic and oleic acid-treated NRK-52E cells showed reduced fat accumulation and modulated expressions of PPARγ, CD36, and TGFß after GTC treatment. In vivo, rats were fed with a high-fat diet (HFD), and the effect of GTC was assessed at 150 and 300 mg/kg body weight doses. HFD-fed rats showed a significant reduction in weight gain and improved serum creatinine, urea, and urine microalbumin levels after GTC treatment. The improved adipokines and insulin levels in GTC treated groups indicated the insulin-sensitizing effect. Histopathology revealed reduced degenerative changes, fibrous tissue deposition, and mesangial matrix proliferation in GTC treated groups. GTC treatment also downregulated the gene expressions of lipogenic and inflammatory factors and improved the altered expressions of CD36 and PPARγ in the kidney tissue. Further, GTC prevented gut dysbiosis in rats by promoting healthy microbes like Akkermansia muciniphila and Lactobacillus reuteri. Faecal metabolome revealed reduced saturated fatty acids, and improved amino acid levels in the GTC treated groups, which help to maintain gut health and metabolism. Overall, GTC prevented obesity-induced kidney damage by modulating PPARγ/CD36 signaling and maintaining gut health in rats.


Asunto(s)
Catequina , Insulinas , Ratas , Animales , PPAR gamma , Catequina/farmacología , Catequina/uso terapéutico , Obesidad/complicaciones , Obesidad/prevención & control , Obesidad/tratamiento farmacológico , Té/química , Dieta Alta en Grasa/efectos adversos , Riñón/metabolismo , Insulinas/uso terapéutico
4.
Front Plant Sci ; 13: 954467, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330257

RESUMEN

Malaxis acuminata D. Don [=Crepidium acuminatum (D. Don) Szlach.] is an endangered medicinal orchid of the Ashtvarga group of plants in Ayurveda (Indian system of traditional medicine). Using a combination of aromatic cytokinin [meta-Topolin (mT)], plant biostimulant (chitosan), auxin [indole-3-butyric acid (IBA)], and a phenolic elicitor [phloroglucinol (PG)], plants of M. acuminata were regenerated in vitro for mass multiplication. The present research reveals the first-ever transcriptome of M. acuminata. A total of 43,111 transcripts encoding 23,951 unigenes were assembled de novo from a total of 815.02 million reads obtained from leaf and pseudobulb of in vitro raised M. acuminata. Expression analysis of genes associated with ß-sitosterol and eugenol biosynthesis in leaf and pseudobulb provided vital clues for differential accumulation of metabolites in M. acuminata. Ultra-performance liquid chromatography (UPLC) confirmed higher amounts of ß-sitosterol and eugenol content in the leaf as compared to the pseudobulb. Differential expression of transcripts related to starch and sucrose metabolism, plant hormone signal transduction, diterpenoid biosynthesis, phenylalanine metabolism, stilbenoid, diarylheptanoid, and gingerol biosynthesis suggested the operation of differential metabolic pathways in leaf and pseudobulb. The present research provides valuable information on the biosynthesis of secondary metabolites in M. acuminata, which could be used for advanced metabolite bioprospection using cell suspension culture and bioreactor-based approaches. Data also suggested that leaf tissues rather than pseudobulb can be used as an alternate source of bioactive metabolites thereby shifting the need for harvesting the pseudobulb. This will further facilitate the conservation and sustainable utilization of this highly valued medicinal orchid.

5.
Phytochem Anal ; 33(7): 1121-1134, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35794832

RESUMEN

INTRODUCTION: Aconitum spp. are prime medicinal plants rich in alkaloids and have been used as the main constituents of traditional medicine in India and China. The whole plant can be toxic and creates pathophysiological conditions inside the human body. Therefore, simultaneous quantification of alkaloids within plant parts and herbal medicines associated with this genus is essential for quality control. OBJECTIVE: We aimed to develop and validate methods using ultra-high-performance liquid chromatography-diode array detector-quadrupole time-of-flight ion mobility mass spectrometry (UHPLC-DAD-QTOF-IMS) and to develop an analytical strategy for the identification and quantification of alkaloid compounds (aconitine, hypaconitine, mesaconitine, aconine, benzoylmesaconitine, benzoylaconine, bulleyaconitine A, and deoxyaconitine) from Aconitum heterophyllum. METHODOLOGY: We developed a simultaneous identification and quantification method for eight alkaloids using UHPLC-DAD-QTOF-IMS. The method was validated as per International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines and also in IMS mode. RESULTS: The developed method has good linearity (r2 = 0.997-0.999), LOD (0.63-8.31 µg/mL), LOQ (0.63-2.80 µg/mL), recovery (86.01-104.33%), reproducibility, intra- and inter-day variability (<3.25%), and stability. Significant qualitative and quantitative variations were found among different plant parts (flower, leaf, stem, root, and tuber) and five market products of A. heterophyllum. Furthermore, a total of 21 metabolites were also profiled based on the fragmentation pattern of MS2 using the validated method. CONCLUSION: An appropriate mobile phase using acetonitrile and water in a gradient elution gave a satisfactory chromatographic separation of eight Aconitum alkaloids with their adjacent peaks. Therefore, this method could provide a scientific and technical platform for quality control assurance.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Acetonitrilos , Aconitina/análisis , Aconitina/química , Aconitum/química , Alcaloides/análisis , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Humanos , Control de Calidad , Reproducibilidad de los Resultados , Agua
6.
J Ethnopharmacol ; 284: 114741, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34699946

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Swertia purpurascens Wall belongs to a well-known genus in traditional systems of medicine worldwide. In folklore, it is used to treat various ailments, including hepatic disorders, as an alternative to the endangered species Swertia chirayita. However, the therapeutic potential of Swertia purpurascens Wall against hepatic fibrosis has not been validated yet. AIM OF THE STUDY: The present study was planned to evaluate the efficacy of the Swertia purpurascens Wall extract (SPE) against hepatic fibrosis and elucidate the underlying mechanism of action. MATERIALS AND METHODS: The metabolite profiling of the SPE was done using UHPLC-QTOF-MS/MS. The acute oral toxicity study of SPE at 2 g/kg BW dose was done in rats. Further, the liver fibrosis was induced by the CCl4 intoxication, and the efficacy of SPE at three doses (100, 200 and 400 mg/kg BW) was evaluated by studying biochemical parameters, histopathology, immunohistochemistry, qRT-PCR, western blotting and in silico analysis. RESULTS: UHPLC-QTOF-MS/MS analysis revealed the presence of a total of 23 compounds in SPE. Acute oral toxicity study of SPE at 2 g/kg BW showed no harmful effects in rats. Further, the liver fibrosis was induced by the CCl4 administration, and the efficacy of SPE was evaluated at three doses (100, 200 and 400 mg/kg BW). SPE treatment significantly improved the body weight gain, the relative liver weight, serum liver injury markers and endogenous antioxidant enzyme levels in the CCl4-treated rats. SPE also recovered the altered liver histology and effectively reduced the fibrotic tissue deposition in the hepatic parenchyma. Further, SPE significantly inhibited the fibrotic (TGFß, αSMA, SMADs and Col1A), proinflammatory markers (NFκB, TNFα and IL1ß) and apoptosis in the liver tissue. Interestingly, SPE treatment also restored the altered hepcidin levels in the liver tissue. In silico study revealed the potential of various metabolites as drug candidates and their interaction with target proteins. CONCLUSION: Altogether, SPE showed its therapeutic potential against CCl4-induced hepatic fibrosis by restoring the hepatic hepcidin levels and inhibiting TGFß/SMAD/NFκB signaling in rats.


Asunto(s)
Hepcidinas/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Extractos Vegetales/farmacología , Swertia/química , Animales , Tetracloruro de Carbono , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/patología , Masculino , FN-kappa B/metabolismo , Extractos Vegetales/administración & dosificación , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Espectrometría de Masas en Tándem , Factor de Crecimiento Transformador beta/metabolismo
7.
BMC Plant Biol ; 21(1): 604, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34937558

RESUMEN

BACKGROUND: Picrorhiza kurroa Royle ex Benth. being a rich source of phytochemicals, is a promising high altitude medicinal herb of Himalaya. The medicinal potential is attributed to picrosides i.e. iridoid glycosides, which synthesized in organ-specific manner through highly complex pathways. Here, we present a large-scale proteome reference map of P. kurroa, consisting of four morphologically differentiated organs and two developmental stages. RESULTS: We were able to identify 5186 protein accessions (FDR < 1%) providing a deep coverage of protein abundance array, spanning around six orders of magnitude. Most of the identified proteins are associated with metabolic processes, response to abiotic stimuli and cellular processes. Organ specific sub-proteomes highlights organ specialized functions that would offer insights to explore tissue profile for specific protein classes. With reference to P. kurroa development, vegetative phase is enriched with growth related processes, however generative phase harvests more energy in secondary metabolic pathways. Furthermore, stress-responsive proteins, RNA binding proteins (RBPs) and post-translational modifications (PTMs), particularly phosphorylation and ADP-ribosylation play an important role in P. kurroa adaptation to alpine environment. The proteins involved in the synthesis of secondary metabolites are well represented in P. kurroa proteome. The phytochemical analysis revealed that marker compounds were highly accumulated in rhizome and overall, during the late stage of development. CONCLUSIONS: This report represents first extensive proteomic description of organ and developmental dissected P. kurroa, providing a platform for future studies related to stress tolerance and medical applications.


Asunto(s)
Organogénesis de las Plantas , Picrorhiza/química , Proteínas de Plantas/análisis , Conjuntos de Datos como Asunto , Espectrometría de Masas , Redes y Vías Metabólicas , Mapeo Peptídico , Proteoma , Estrés Fisiológico
8.
Food Res Int ; 148: 110619, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507763

RESUMEN

Polygonatum verticillatum is one of the least explored plant of genus Polygonatum, having immense utility in food and medicine. The current study was designed to investigate and compare the metabolite diversity, including the nutritional potential of rhizomatous and aerial parts (leaves and fruits) of Polygonatum verticillatum. Comprehensive metabolites through UPLC-PDA-ESI/MS were tentatively identified 38, 31, and 16 compounds while 342, 414, and 314 were identified through METLIN database in leaves, fruits, and rhizomes, respectively. Total phenolic, flavonoid, protein, carbohydrate, and fat content were compared and found in the range of 24.50-27.64 and 101.40-109.50, 99-100, 58-200, 5-56 µg/mg, respectively, while antioxidant activity was highest in fruits (IC50DPPH 456.30 µg/ml). Polyphenols, essential amino acids, and macro & micronutrients were estimated in all the parts of P. verticillatum. Leaves contained the highest number of targeted polyphenols and amino acids, followed by fruits and rhizomes. Statistical analysis (Venn-diagram, Heatmap, stacked charts, PCA, PCoA) has visualized that all parts have similar nutritional potential and chemical diversity. The current finding unleashed the possibilities of utilizing aerial parts instead of rhizomes that would save this plant from overexploitation.


Asunto(s)
Plantas Medicinales , Polygonatum , Metabolómica , Extractos Vegetales , Rizoma
9.
Chem Biodivers ; 18(10): e2100300, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34375021

RESUMEN

Trillium govanianum rhizomes are traditionally consumed as a raw powder and decoction for the treatment of health complications. Hence, the present study aimed to investigate whether aqueous and alcoholic extracts of T. govanianum rhizomes under hot and cold extraction conditions have similar or dissimilar chemical, nutrient, and antioxidant profiles. The total phenolics, flavonoids, carbohydrates, proteins, fats, and energy values were estimated in all the conditionally prepared samples. The total phenolics (21.23±1.4 mg GAE/g extract), flavonoids (70.57±3.24 mg RE/g extract) were found higher in hot ethanolic extract (TGHEt), while cold water extract (TGGC) showed higher nutrients including amino acids (10.545±0.219 mg/g) and nucleosides (1.803±0.018 mg/g). The nutrient energy value (2.60 and 2.49 Kcal/g extract) was higher in cold and hot ethanolic extracts. Further, TGHEt scavenged the DPPH. (IC50 ; 870±22 µg/mL) and ABTS.+ (IC50 ; 80±1.49 µg/mL) effectively and proved its highest antioxidant activity compared to other samples. In LC/MS/MS-based metabolite profiling, twenty-six metabolites (fatty acids, steroidal saponins, triterpene saponins, ecdysteroid hormones) were confirmed with mass fragmentation and literature, while one hundred nine metabolites were identified using the METLIN database. The principal component analysis showed clustering of hot condition extracts while cold extracts were differentially located in quadrants. The heatmaps exhibited the associations and differences between metabolite composition, solvents, and extraction conditions. The identified metabolites speculatively predicted the biosynthesis pathway of T. govanianum. Findings also illustrated that T. govanianum is a source of bioactive nutritional components and saponins. The current metabolite profiling of T. govanianum will help in its agricultural and biotechnological interventions for higher quality produce.


Asunto(s)
Antioxidantes/farmacología , Extractos Vegetales/farmacología , Trillium/química , Antioxidantes/química , Antioxidantes/metabolismo , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Picratos/antagonistas & inhibidores , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Ácidos Sulfónicos/antagonistas & inhibidores
10.
J Ethnopharmacol ; 271: 113894, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33516930

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: There is growing inclination towards developing bioactive molecule-based strategies for the management of allergic airway inflammation associated respiratory diseases. Vitex negundo Linn., also known as Nirgundi, is one such medicinal plant enriched with phytochemicals and used for inflammatory and respiratory disorders including asthma in traditional system of medicine. Preliminary studies have claimed anti-tussive and bronchodilator potential of V. negundo Linn. However, its attributes as well as molecular mechanism (s) in modulation of asthma mediated by allergic inflammation are yet to be delineated scientifically. AIM OF THE STUDY: Present study attempted to assess the effectiveness of Vitex negundo leaf extract (VNLE) in mitigation of allergen induced inflammation associated asthmatic lung damage with emphasis to delineate its molecular mechanism (s). MATERIALS AND METHODS: Allergic lung inflammation was established in Balb/c mice using Ovalbumin-lipopolysaccharide (OVA-LPS). Several allergic inflammatory parameters, histopathological changes, alveolar macrophage activation and signalling pathways were assessed to examine protective effects of VNLE. UHPLC-DAD-QTOF-ESI-IMS was used to characterize VLNE. RESULTS: VNLE administration effectively attenuated LPS-induced oxi-inflammatory stress in macrophages suggesting its anti-inflammatory potential. Further, VNLE showed protective effect in mitigating asthmatic lung damage as evident by reversal of pathological changes including inflammatory cell influx, congestion, fibrosis, bronchial thickness and alveolar collapse observed in allergen group. VNLE suppressed expressions of inflammatory Th1/Th2 cytokines, chemokines, endopeptidases (MMPs), oxidative effector enzyme (iNOS), adhesion molecules, IL-4/IFN-γ release with simultaneous enhancement in levels of IL-10, IFN-γ, MUC3 and tight junction proteins. Subsequent mechanistic investigation revealed that OVA-LPS concomitantly enhanced phosphorylation of NF-κB, PI3K, Akt and p38MAPKs and downregulated AMPK which was categorically counteracted by VNLE treatment. VNLE also suppressed OVA-LPS induced fibrosis, apoptosis, autophagy and gap junction proteins which were affirmed by reduction in TGF-ß, Smad2/3/4, Caspase9/3, Bax, LC3A/B, connexin 50, connexin 43 and enhancement in Bcl2 expression. Additionally, suppression of alveolar macrophage activation, inflammatory cells in blood and elevation of splenic CD8+T cells was demonstrated. UHPLC-DAD-QTOF-ESI-IMS revealed presence of iridoids glycoside and phenolics which might contribute these findings. CONCLUSION: These findings confer protective effect of VNLE in attenuation of allergic lung inflammation and suggest that it could be considered as valuable medicinal source for developing safe natural therapeutics for mitigation of allergic inflammation during asthma.


Asunto(s)
Antiinflamatorios/farmacología , Asma/tratamiento farmacológico , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/metabolismo , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Vitex/química , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Asma/inducido químicamente , Caspasas/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Activación de Macrófagos/efectos de los fármacos , Ratones Endogámicos BALB C , Proteínas Asociadas a Microtúbulos/metabolismo , FN-kappa B/metabolismo , Ovalbúmina/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Front Plant Sci ; 11: 01263, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117410

RESUMEN

The use of new agricultural technologies such as soilless and aeroponic cultivation systems is a valuable approach to medicinal plant production. The present study investigated the prospects of enhancing yield and secondary metabolite production in Valeriana jatamansi under aeroponic cultivation using elicitors, such as yeast extract and methyl jasmonate. Plants were evaluated by measuring growth parameters, photosynthetic rate, and secondary metabolites contents (on a dry weight basis). Maximum plant height (36.83 cm), leaf number (17.67), rootlet number (37.33), and rootlet length (6.90 cm) were observed at 0.5 mg/L yeast extract treatment; whereas treatment levels of 1.5 mg/L yeast extract and 150 µM methyl jasmonate resulted in maximum leaf length (6.95 cm) and leaf width (5.43 cm), respectively. Maximum photosynthetic rate (5.4053 µmol m-2s-1) and stomatal conductance (0.0656 mmol m-2s-1) were recorded at treatment levels of 0.5 mg/L and 1.5 mg/L yeast extract respectively, whereas at 150 µM methyl jasmonate treatment, transpiration rate was 0.9046 mmol m-2s-1. In aeroponic cultivation, the maximum content of valerenic acid and hydroxy valerenic acid was detected in leaf (2.47 and 8.37 mg/g) and root (1.78 and 7.89 mg/g) at treatment levels of 100 µM and 150 µM methyl jasmonate, respectively. Acetoxy valerenic acid was highest in leaf (1.02 mg/g) at 1.5 mg/L yeast extract, and in the root (2.38 mg/g) at 150 µM methyl jasmonate. Gas chromatography-mass spectrometry analysis identified twenty-eight volatile compounds in roots, of which three-isovaleric acid (6.72-50.81%), patchouli alcohol (13.48-25.31%) and baldrinal (0.74-25.26%)-were the major constituents. The results revealed that, besides roots, leaves could also be utilized as a prominent alternative source for targeted secondary metabolites. In conclusion, aeroponic cultivation offers year-round quality biomass production and ease to access subsequent roots harvest in V. jatamansi, to meet the demand of the pharmaceutical industries.

12.
Metabolomics ; 16(7): 77, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32577832

RESUMEN

INTRODUCTION: Along the altitude, environmental conditions vary significantly that might influence plant performance and distribution. Adaptation to these changing conditions is a complex biological process that involves reprogramming of genes, proteins and metabolites. The metabolic response of medicinal plants along the altitude has been less explored yet. OBJECTIVES: In the present study, we investigated the adaptation strategies of Picrorhiza kurroa Royle ex Benth. along the altitude in organ specific manner using metabolomic approach. METHODS: Picrorhiza kurroa plants at flowering stage were randomly sampled from three altitudes viz. 3400, 3800 and 4100 masl in the Himalayan region. Leaf, root and rhizome were used for LC-MS based non-targeted metabolite profiling and targeted analysis of sugars, amino acids, picrosides and their corresponding phenolic acids. RESULTS: A total of 220, primary and secondary metabolites (SMs) were identified (p < 0.05) representing an extensive inventory of metabolites and their spatial distribution in P. kurroa. Differential accumulation of metabolites suggests source-sink carbon partitioning, occurrence of partial TCA cycle, ascorbate metabolism, purine catabolism and salvage route, pyrimidine synthesis, lipid alteration besides gibberellins and cytokinin inhibition might be an adaptive strategy to alpine environmental stress along the altitude. Further, marked differences of organ and altitude specific SMs reflect alteration in secondary metabolic pathways. Significant accumulation of picrosides suggests their probable role in P. kurroa adaptation. CONCLUSION: This study provides a platform that would be useful in deciphering the role of metabolites considered to be involved in plant adaptation.


Asunto(s)
Adaptación Fisiológica/fisiología , Picrorhiza/metabolismo , Altitud , Evolución Biológica , Cromatografía Liquida/métodos , Cinamatos/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/genética , Redes y Vías Metabólicas/fisiología , Metaboloma/fisiología , Metabolómica/métodos , Picrorhiza/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Plantas Medicinales/química , Plantas Medicinales/metabolismo
13.
J Proteomics ; 219: 103755, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32201363

RESUMEN

Global warming is currently one of the most serious issues in ecology. Rising CO2 level and temperature have begun to impact life cycles, distribution and yield of various plants yet, how medicinal plants will respond to changing environment is largely unknown. Picrorhiza kurroa Royle ex Benth. (Plantaginaceae) is a medicinal plant species that has been used for treatment of various diseases, particularly hepatic disease. Here, we have performed leaf and rhizome specific proteomic and metabolomic analysis to investigate the effect of elevated CO2 and temperature on adaptive responses of P. kurroa. We observed differentially abundant proteins related to photosynthesis and carbon metabolism under free air carbon dioxide enhancement, whereas cytoskeleton proteins in free air temperature increase besides signaling, antioxidant, stress-responsive and chromatin remodeling proteins in both conditions. We also found an increased accumulation of metabolites, particularly picroside-I and picroside-II, sugars and sugar alcohol in rhizomes, whereas, decrease in picroside-I and increase in picroside-II content in leaves at FACE condition. Biochemical indices like total protein, phenolics, flavonoids and antioxidant activity were altered in a tissue-specific manner to elevated CO2 and temperature. The results would provide new insights into possible adaptive mechanism, particularly in P. kurroa and medicinal plants in general. SIGNIFICANCE: Picrorhiza kurroa is an endangered medicinal plant of Himalayan region having immense medicinal values due to the presence of iridoid glycosides. This endangered plant species is particularly, more vulnerable to climate change. P. kurroa provides an opportunity to investigate the interaction between high altitude plant and their environment. Therefore, it will be essential to elucidate the adaptation mechanism at molecular level under e[CO2] and e[t] conditions. The e[CO2] and e[t] will likely alter the proteome and metabolite composition of plant and thereby, enhance plant adaptation. Proteomic and metabolomic studies would facilitate to explore the adaptive mechanism of P. kurroa which is poorly understood. Collectively, the findings will be helpful for better understanding of plant response to future CO2 and temperature enriched environment and are of key importance to agriculture and ecosystem.


Asunto(s)
Picrorhiza , Antioxidantes , Dióxido de Carbono , Ecosistema , Fotosíntesis , Proteómica , Temperatura
14.
Phytochem Anal ; 31(3): 333-339, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31898384

RESUMEN

INTRODUCTION: Polygonatum is widely used as a part of food in different regions of the world which covers five main categories such as drinks, vegetables, snacks, staple and seasoning foods. Presently, no analytical method is available for the quality control of Polygonatum. OBJECTIVE: Development and validation of a method using ultrahigh-performance liquid chromatography diode array detector quadrupole time-of-flight (UHPLC-DAD/QTOF) technique for the estimation of six compounds including a flavonol glycoside [rutin (1)], two flavonols [quercetin (2) and kaempherol (3)] and three homoisoflavonoids [5,7-dihydroxy-3-(2-hydroxy-4-methoxybenzyl)-chroman-4-one (4), 5,7-dihydroxy-3-(2-hydroxy-4-methoxybenzyl)-8-methylchroman-4-one (5) and 5,7-dihydroxy-3-(4-methoxybenzyl)-8-methylchroman-4-one (6)]. In addition, screening of extract, fractions and compounds of P. verticillatum for antioxidant activity was also determined. METHODOLOGY: The separation was achieved on C-18 column using acetonitrile and water containing 0.1% formic acid. The method was validated as per ICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use) guidelines. The validated method was applied for the simultaneous identification and quantification of compounds 1-6 in extract (E) and fractions (F1-F4) of P. verticillatum. Furthermore, antioxidant potential of E, F1 and F2 and compounds was evaluated using DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. RESULTS: The method was within the linear range (r2 ) of 0.982 to 0.999, precise (intra- and inter-day percentage relative standard deviations < 2.72 and 2.26) and accurate with recoveries (89.1-98.3%). The limit of detection and limit of quantification were in the ranges 0.02-0.16 and 0.06-0.48 ng/mL, respectively. Compounds 1-6 were quantified in all the samples. Compounds 1, 2 and 5 showed higher activity with half maximal inhibitory concentration (IC50 ) values 0.41, 0.39, 0.72 at 10, 20 and 30 µg/mL, respectively. CONCLUSION: Developed method will be helpful to assess the quality of P. verticillatum raw material and their derived products.


Asunto(s)
Polygonatum , Antioxidantes , Cromatografía Líquida de Alta Presión , Flavonoides , Flavonoles , Glicósidos , Humanos , Extractos Vegetales
15.
Planta ; 251(1): 35, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31853722

RESUMEN

MAIN CONCLUSION: Comparative proteomics and metabolomics study of juvenile green, light purple and dark purple leaf to identify key proteins and metabolites that putatively govern color transition in Camellia sinensis. Color transition from juvenile green to dark purple leaf in Camellia sinensis is a complex process and thought to be regulated by an intricate balance of genes, proteins and metabolites expression. A molecular-level understanding of proteins and metabolites expression is needed to define metabolic process underpinning color transition in C. sinensis. Here, purple leaf growth of C. sinensis cultivar was divided into three developmental stages viz. juvenile green (JG), light purple (LP) and dark purple (DP) leaf. Scanning electron microscope (SEM) analysis revealed a clear morphological variation such as cell size, shape and texture as tea leaf undergoing color transition. Proteomic and metabolomic analyses displayed the temporal changes in proteins and metabolites that occur in color transition process. In total, 211 differentially expressed proteins (DEPs) were identified presumably involved in secondary metabolic processes particularly, flavonoids/anthocyanin biosynthesis, phytohormone regulation, carbon and nitrogen assimilation and photosynthesis, among others. Subcellular localization of three candidate proteins was further evaluated by their transient expression in planta. Interactome study revealed that proteins involved in primary metabolism, precursor metabolite, photosynthesis, phytohormones, transcription factor and anthocyanin biosynthesis were found to be interact directly or indirectly and thus, regulate color transition from JG to DP leaf. The present study not only corroborated earlier findings but also identified novel proteins and metabolites that putatively govern color transition in C. sinensis. These findings provide a platform for future studies that may be utilized for metabolic engineering/molecular breeding in an effort to develop more desirable traits.


Asunto(s)
Camellia sinensis/metabolismo , Camellia sinensis/efectos de la radiación , Luz , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Antocianinas/biosíntesis , Camellia sinensis/genética , Carbono/metabolismo , Tamaño de la Célula , Clorofila/análisis , Color , Flavonoides/biosíntesis , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Metabolómica , Nitrógeno/metabolismo , Fotosíntesis , Reguladores del Crecimiento de las Plantas , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Proteómica , Metabolismo Secundario , , Factores de Transcripción , Transcriptoma
16.
FEBS Open Bio ; 9(12): 2025-2040, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31050202

RESUMEN

Multidrug-resistant Staphylococcus aureus infections place a huge burden on the healthcare sector and the wider community. An increasing rate of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has necessitated the development of alternative agents. We previously reported that usnic acid (UA) has activity against MRSA; here, we report the effect of UA in combination with norfloxacin on the drug resistance of MRSA clinical isolates. We observed that the combination of UA-norfloxacin significantly reduces the bacterial burden in mouse models infected with S. aureus, without causing any detectable associated toxicity. Proteomic analysis indicated that UA-norfloxacin induces oxidative stress within cells, which leads to membrane damage and inhibits metabolic activity and biosynthesis of peptidoglycan and fatty acids. Collectively, this study provides evidence that UA in combination with norfloxacin may be a potential candidate for development into a resistance-modifying agent for the treatment of invasive MRSA infections.


Asunto(s)
Benzofuranos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Antibacterianos/farmacología , Resistencia a Medicamentos , Sinergismo Farmacológico , Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Masculino , Staphylococcus aureus Resistente a Meticilina/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Norfloxacino/farmacología , Peptidoglicano/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
17.
Inflammopharmacology ; 26(6): 1483-1495, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29429000

RESUMEN

The present investigation assessed the potential of Prunus cerasoides fruit extract (PCFE) in alleviation of inflammatory stress in response to lipopolysaccharide (LPS) and interferon-γ (IFN-γ)-stimulated murine peritoneal macrophages as well as in concanavalin A (Con A)-activated splenic lymphocytes. We observed a strong inhibition in production of nitric oxide (NO), reactive oxygen species (ROS), inflammatory cytokines (TNF-α/IL-6/IL-1ß), inducible nitric oxide synthase (iNOS), and NF-kB in macrophages treated with PCFE. Splenic lymphocytes treated with PCFE also showed a reduction in Con-A-induced cell proliferation and numbers of CD3+CD4+ T cells. Furthermore, PCFE treatment to Con A-stimulated lymphocytes decreased the production of inflammatory cytokines (TNF-α/IL-6/IL-1ß) with a concomitant increase in IL-10 suggesting its possible role in alleviation of inflammation-driven Th1/Th2 immune imbalance. PCFE appeared to influence innate immune response even at lower concentrations (25 and 50 µg/ml), while such effects were more pronounced in lymphocytes only at higher concentrations (100 and 200 µg/ml). UPLC-ESI-MS of PCFE revealed the presence of major bioactive phenolics including catechin, naringin as well as ascorbic acid which could have contributed in above findings. Overall, it is indicative that P. cerasoides fruit could be a valuable source for the development of anti-inflammatory functional foods and nutraceuticals.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Inflamación/prevención & control , Linfocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Extractos Vegetales/farmacología , Prunus/química , Balance Th1 - Th2/efectos de los fármacos , Animales , Citocinas/metabolismo , Frutas , Inflamación/inducido químicamente , Interferón gamma , Lipopolisacáridos , Activación de Linfocitos , Activación de Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/biosíntesis , Fenoles/química , Fenoles/farmacología , Especies Reactivas de Oxígeno/metabolismo
18.
Food Chem ; 242: 601-610, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29037735

RESUMEN

l-theanine (l-Th), a non-protein amino acid present in tea, is a valuable nutraceutical product with unique health benefits and used as an additive in food industry. l-Th enhances the umami taste but its use is limited due to its inadequate production. Different extraction approaches from tea shoots, chemical synthesis to microbial transformation have been tried to meet its demand. In vitro, in vivo as well as clinical studies have shown its positive effect in regulating CNS disorders. l-Th has become choice ingredient in CNS active products due to its anti-stress and neuroprotective role in dementias particularly in retrogression of Alzheimer's. l-Th biochemically modulates various anti-neoplastic agents by increasing their bioavailability in tumour cells. The review, is an effort to condense the recent research on l-Th highlighting its biological resource, plausible role in tea plant, production approaches, its physiological role on human health and future prospects.


Asunto(s)
Camellia sinensis/química , Glutamatos/análisis , Té/química , Animales , Humanos , Gusto
19.
PLoS One ; 12(6): e0178924, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28575108

RESUMEN

Withania somnifera is a high value medicinal plant which is used against large number of ailments. The medicinal properties of the plant attributes to a wide array of important secondary metabolites. The plant is predominantly infected with leaf spot pathogen Alternaria alternata, which leads to substantial biodeterioration of pharmaceutically important metabolites. To develop an effective strategy to combat this disease, proteomics based approach could be useful. Hence, in the present study, three different protein extraction methods tris-buffer based, phenol based and trichloroacetic acid-acetone (TCA-acetone) based method were comparatively evaluated for two-dimensional electrophoresis (2-DE) analysis of W. somnifera. TCA-acetone method was found to be most effective and was further used to identify differentially expressed proteins in response to fungal infection. Thirty-eight differentially expressed proteins were identified by matrix assisted laser desorption/ionization time of flight-mass spectrometry (MALDI TOF/TOF MS/MS). The known proteins were categorized into eight different groups based on their function and maximum proteins belonged to energy and metabolism, cell structure, stress and defense and RNA/DNA categories. Differential expression of some key proteins were also crosschecked at transcriptomic level by using qRT-PCR and were found to be consistent with the 2-DE data. These outcomes enable us to evaluate modifications that take place at the proteomic level during a compatible host pathogen interaction. The comparative proteome analysis conducted in this paper revealed the involvement of many key proteins in the process of pathogenesis and further investigation of these identified proteins could assist in the discovery of new strategies for the development of pathogen resistance in the plant.


Asunto(s)
Alternaria/fisiología , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Withania/genética , Withania/microbiología , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/análisis , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
20.
Food Chem ; 176: 357-66, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25624244

RESUMEN

Recently anthocyanin-rich purple tea varieties have been developed. The quality of these new purple tea varieties developed in Kangra valley was assessed, and compared with the quality of tea from standard Kangra clone. Purple tea shoots (PL) recorded higher amount of polyphenols compared to standard green tea shoot (GL) while epigallocatechin gallate (EGCG) recorded higher levels in GL. Higher levels of theaflavins were recorded in orthodox black tea from purple shoots (BTP) compared to black tea (BT) made from green shoots. Both theanine and caffeine recorded higher levels in GL. Volatile flavour profiles of these teas showed qualitative and quantitative differences. Aroma extract dilution assay showed higher dilution factors in BTP than BT. Orthodox teas from purple shoots exhibited higher antioxidant activity compared to standard black tea. Strong correlation of total quality scores with aroma and infusion colour was observed. Tea from anthocyanin-rich cultivars can become specialty teas with high antioxidant activity.


Asunto(s)
Antocianinas/química , Antioxidantes/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Té/química , India , Polifenoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA