Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 1288, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434267

RESUMEN

Skeletal muscle mitochondrial function is the biggest component of whole-body energy output. Mitochondrial energy production during exercise is impaired in vitamin D-deficient subjects. In cultured myotubes, loss of vitamin D receptor (VDR) function decreases mitochondrial respiration rate and ATP production from oxidative phosphorylation. We aimed to examine the effects of vitamin D deficiency and supplementation on whole-body energy expenditure and muscle mitochondrial function in old rats, old mice, and human subjects. To gain further insight into the mechanisms involved, we used C2C12 and human muscle cells and transgenic mice with muscle-specific VDR tamoxifen-inducible deficiency. We observed that in vivo and in vitro vitamin D fluctuations changed mitochondrial biogenesis and oxidative activity in skeletal muscle. Vitamin D supplementation initiated in older people improved muscle mass and strength. We hypothesize that vitamin D supplementation is likely to help prevent not only sarcopenia but also sarcopenic obesity in vitamin D-deficient subjects.


Asunto(s)
Sarcopenia , Deficiencia de Vitamina D , Humanos , Ratones , Ratas , Animales , Anciano , Vitamina D/farmacología , Vitamina D/metabolismo , Sarcopenia/metabolismo , Deficiencia de Vitamina D/metabolismo , Deficiencia de Vitamina D/patología , Músculo Esquelético/patología , Mitocondrias/metabolismo , Estrés Oxidativo
2.
J Nutr ; 147(12): 2262-2271, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28835387

RESUMEN

Background: A promising strategy to help older adults preserve or build muscle mass is to optimize muscle anabolism through providing an adequate amount of high-quality protein at each meal.Objective: This "proof of principle" study investigated the acute effect of supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink on postprandial muscle protein synthesis and longer-term effect on muscle mass in healthy older adults.Methods: A randomized, placebo-controlled, double-blind study was conducted in 24 healthy older men [mean ± SD: age 71 ± 4 y; body mass index (in kg/m2) 24.7 ± 2.8] between September 2012 and October 2013 at the Unit of Human Nutrition, University of Auvergne, Clermont-Ferrand, France. Participants received a medical nutrition drink [test group; 21 g leucine-enriched whey protein, 9 g carbohydrates, 3 g fat, 800 IU cholecalciferol (vitamin D3), and 628 kJ] or a noncaloric placebo (control group) before breakfast for 6 wk. Mixed muscle protein fractional synthesis rate (FSR) was measured at week 0 in the basal and postprandial state, after study product intake with a standardized breakfast with the use of l-[2H5]-phenylalanine tracer methodology. The longer-term effect of the medical nutrition drink was evaluated by measurement of appendicular lean mass, representing skeletal muscle mass at weeks 0 and 6, by dual-energy X-ray absorptiometry.Results: Postprandial FSR (0-240 min) was higher in the test group than in the control group [estimate of difference (ED): 0.022%/h; 95% CI: 0.010%/h, 0.035%/h; ANCOVA, P = 0.001]. The test group gained more appendicular lean mass than the control group after 6 wk (ED: 0.37 kg; 95% CI: 0.03, 0.72 kg; ANCOVA, P = 0.035), predominantly as leg lean mass (ED: 0.30 kg; 95% CI: 0.03, 0.57 kg; ANCOVA, P = 0.034).Conclusions: Supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink stimulated postprandial muscle protein synthesis and increased muscle mass after 6 wk of intervention in healthy older adults and may therefore be a way to support muscle preservation in older people. This trial was registered at www.trialregister.nl as NTR3471.


Asunto(s)
Bebidas/análisis , Leucina/administración & dosificación , Proteínas Musculares/biosíntesis , Vitamina D/administración & dosificación , Proteína de Suero de Leche/administración & dosificación , Proteína de Suero de Leche/química , Anciano , Desayuno , Dieta , Método Doble Ciego , Ingestión de Energía , Análisis de los Alimentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Músculo Esquelético , Periodo Posprandial
3.
J Nutr Biochem ; 46: 30-38, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28445792

RESUMEN

We investigated the impact of vitamin D deficiency and repletion on muscle anabolism in old rats. Animals were fed a control (1 IU vitamin D3/g, ctrl, n=20) or a vitamin D-depleted diet (VDD; 0 IU, n=30) for 6 months. A subset was thereafter sacrificed in the control (ctrl6) and depleted groups (VDD6). Remaining control animals were kept for 3 additional months on the same diet (ctrl9), while a part of VDD rats continued on a depleted diet (VDD9) and another part was supplemented with vitamin D (5 IU, VDS9). The ctr16 and VDD6 rats and the ctr19, VDD9 and VDS9 rats were 21 and 24 months old, respectively. Vitamin D status, body weight and composition, muscle strength, weight and lipid content were evaluated. Muscle protein synthesis rate (fractional synthesis rate; FSR) and the activation of controlling pathways were measured. VDD reduced plasma 25(OH)-vitamin D, reaching deficiency (<25 nM), while 25(OH)-vitamin D increased to 118 nM in the VDS group (P<.0001). VDD animals gained weight (P<.05) with no corresponding changes in lean mass or muscle strength. Weight gain was associated with an increase in fat mass (+63%, P<.05), intramyocellular lipids (+75%, P<.05) and a trend toward a decreased plantaris weight (-19%, P=.12). Muscle FSR decreased by 40% in the VDD group (P<.001), but was restored by vitamin D supplementation (+70%, P<.0001). Such changes were linked to an over-phosphorylation of eIF2α. In conclusion, vitamin D deficiency in old rats increases adiposity and leads to reduced muscle protein synthesis through activation of eIF2α. These disorders are restored by vitamin D supplementation.


Asunto(s)
Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Deficiencia de Vitamina D/metabolismo , Vitamina D/farmacología , Envejecimiento/fisiología , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Suplementos Dietéticos , Ingestión de Alimentos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas Wistar , Transducción de Señal , Vitamina D/sangre , Deficiencia de Vitamina D/dietoterapia , Deficiencia de Vitamina D/fisiopatología
4.
Oncotarget ; 7(14): 17338-55, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26943770

RESUMEN

Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model.


Asunto(s)
Antioxidantes/administración & dosificación , Dieta , Leucina/administración & dosificación , Músculo Esquelético/fisiología , Proteína de Suero de Leche/administración & dosificación , Factores de Edad , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Estrés Oxidativo/fisiología , Distribución Aleatoria
5.
PLoS One ; 4(4): e5283, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19381333

RESUMEN

BACKGROUND: Glucocorticoids levels are high in catabolic conditions but it is unclear how much of the catabolic effects are due to negative energy balance versus glucocorticoids and whether there are distinct effects on metabolism and functions of specific muscle proteins. METHODOLOGY/PRINCIPAL FINDINGS: We determined whether 14 days of high dose methylprednisolone (MPred, 4 mg/kg/d) Vs food restriction (FR, food intake matched to MPred) in rats had different effects on muscle mitochondrial function and protein fractional synthesis rates (FSR). Lower weight loss (15%) occurred in FR than in MPred (30%) rats, while a 15% increase occurred saline-treated Controls. The per cent muscle loss was significantly greater for MPred than FR. Mitochondrial protein FSR in MPred rats was lower in soleus (51 and 43%, respectively) and plantaris (25 and 55%) than in FR, while similar decline in protein FSR of the mixed, sarcoplasmic, and myosin heavy chain occurred. Mitochondrial enzymatic activity and ATP production were unchanged in soleus while in plantaris cytochrome c oxidase activity was lower in FR than Control, and ATP production rate with pyruvate + malate in MPred plantaris was 28% lower in MPred. Branched-chain amino acid catabolic enzyme activities were higher in both FR and MPred rats indicating enhanced amino acid oxidation capacity. CONCLUSION/SIGNIFICANCE: MPred and FR had little impact on mitochondrial function but reduction in muscle protein synthesis occurred in MPred that could be explained on the basis of reduced food intake. A greater decline in proteolysis may explain lesser muscle loss in FR than in MPred rats.


Asunto(s)
Restricción Calórica , Metilprednisolona/administración & dosificación , Mitocondrias Musculares/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Glucemia/análisis , Peso Corporal , Relación Dosis-Respuesta a Droga , Insulina/sangre , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA