Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photobiomodul Photomed Laser Surg ; 40(1): 13-24, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34941461

RESUMEN

Objective: The difficulty in chronic diabetic wound healing remains the focus of clinical research. Photobiomodulation therapy (PBMT) with different wavelengths could exert different effects on wound healing, but the effects of combined red and blue light (BL) remained unclear. Methods: Diabetic rat wound model and diabetic wounded endothelial cell model were established to observe possible effects of PBMT using combined wavelengths for wound healing. Cells and animals were separated into four groups exposed to red and/or BL. Cell viability, apoptosis, and migration, as well as the expression level of nitric oxide (NO), vascular endothelial growth factor, interleukin-6, and tumor necrosis factor-α were measured in vitro. Diabetic rats were evaluated for wound closure rates, collagen deposition, inflammation intensity, and density of neovascularization after light irradiation. Results: PBMT using combined wavelengths significantly sped up the healing process with increasing angiogenesis density, collagen deposition, and alleviating inflammation in vivo. Moreover, combined wavelength irradiation promoted cell proliferation and migration, and NO production, as well as reduced reactive oxygen species and inflammation in vitro. Conclusions: PBMT using combined wavelengths performed a synergistic effect for promoting diabetic wound healing and would be helpful to explore a more efficient pattern toward chronic wound healing.


Asunto(s)
Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Animales , Colágeno , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/terapia , Ratas , Factor A de Crecimiento Endotelial Vascular , Cicatrización de Heridas
2.
Ann Plast Surg ; 86(5): 582-587, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32756256

RESUMEN

BACKGROUND: Random skin flap ischemic necrosis is a serious challenge in reconstructive surgery. Photobiomodulation is a noninvasive effective technique to improve microcirculation and neovascularization. Photobiomodulation with red or blue light has been separately proven to partially prevent skin flap necrosis, but the synergistic effect of red and blue light not been elucidated. Our experiment evaluated the impact of postconditioning with red-blue light therapy on the viability of random flaps. METHODS: Thirty Sprague-Dawley male rats (male, 12 weeks) with a cranially based random pattern skin flap (3 × 8 cm) were divided into 3 groups: control group, red light group, and red-blue light group. On postoperative day 7, flap survival was observed and recorded using transparent graph paper, flaps were obtained and stained with hematoxylin and eosin, and microvessel density was measured. Micro-computed tomography was used to measure vascular volume and vascular length. On days 0, 3, and 7 after surgery, blood flow was measured by laser Doppler. To investigate the underlying mechanisms, the amount of nitric oxide (NO) metabolites in the flap tissue was assessed on days 3, 5, and 7 after surgery. RESULTS: The mean percentage of skin flap survival was 59 ± 10% for the control group, 69 ± 7% for the red light group, and 79 ± 9% for the red-blue light group (P < 0.01). The microvessel density was 12.3 ± 1.2/mm2 for the control group, 31.3 ± 1.3/mm2 for the red light group, and 36.5 ± 1.4/mm2 for the red-blue light group (P < 0.01). Both vascular volume and total length in the red-blue light group showed significantly increased compared with the red light and control group (P < 0.01). Blood flow in the red-blue light treated flap showed significantly increased at postsurgery days 3 and 7 compared with the red light and control group (P < 0.01). The level of the NO metabolites was significantly increased in flap tissues belonging to the red-blue light group compared with the other 2 groups (P < 0.01). CONCLUSIONS: This study showed that postconditioning with red-blue light therapy can enhance the survival of random skin flap by improving angiogenesis and NO releasing.


Asunto(s)
Supervivencia de Injerto , Piel , Animales , Masculino , Necrosis , Fototerapia , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA