RESUMEN
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Asunto(s)
Envejecimiento , Rigidez Vascular , Humanos , Envejecimiento/metabolismo , Estrés Oxidativo , Senescencia Celular , Transducción de SeñalRESUMEN
This study investigated the effect of nicotinamide (NAM) supplementation on the development of brain inflammation and microglial activation in a mouse model of type 1 diabetes mellitus. C57BL/6J male mice, which were made diabetic with five consecutive, low-dose (55 mg/kg i.p.) streptozotocin (STZ) injections. Diabetic mice were randomly distributed in different experimental groups and challenged to different doses of NAM (untreated, NAM low-dose, LD, 0.1%; NAM high-dose, HD, 0.25%) for 25 days. A control, non-diabetic group of mice was used as a reference. The NAD+ content was increased in the brains of NAM-treated mice compared with untreated diabetic mice (NAM LD: 3-fold; NAM HD: 3-fold, p-value < 0.05). Immunohistochemical staining revealed that markers of inflammation (TNFα: NAM LD: -35%; NAM HD: -46%; p-value < 0.05) and microglial activation (IBA-1: NAM LD: -29%; NAM HD: -50%; p-value < 0.05; BDKRB1: NAM LD: -36%; NAM HD: -37%; p-value < 0.05) in brains from NAM-treated diabetic mice were significantly decreased compared with non-treated T1D mice. This finding was accompanied by a concomitant alleviation of nuclear NFκB (p65) signaling in treated diabetic mice (NFκB (p65): NAM LD: -38%; NAM HD: -53%, p-value < 0.05). Notably, the acetylated form of the nuclear NFκB (p65) was significantly decreased in the brains of NAM-treated, diabetic mice (NAM LD: -48%; NAM HD: -63%, p-value < 0.05) and inversely correlated with NAD+ content (r = -0.50, p-value = 0.03), suggesting increased activity of NAD+-dependent deacetylases in the brains of treated mice. Thus, dietary NAM supplementation in diabetic T1D mice prevented brain inflammation via NAD+-dependent deacetylation mechanisms, suggesting an increased action of sirtuin signaling.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Encefalitis , Ratones , Masculino , Animales , Niacinamida/farmacología , NAD , Ratones Endogámicos C57BL , Encefalitis/prevención & controlRESUMEN
BACKGROUND: Medical nutrition therapy (MNT) has an integral role in overall diabetes management. During adolescence, consideration of physiological and psychosocial changes is essential for implementing an optimal diabetes treatment. OBJECTIVES: Our aim was to identify, summarize, and interpret the published literature about MNT in adolescents with type 1 diabetes. METHODS: The Medline (PubMed) and EMBASE databases were searched from January 1959 to December 2021. The inclusion criteria were interventional studies with MNT in adolescents with type 1 diabetes with a disease duration over 1 year, including the following outcomes: dietary intake and daily eating patterns (assessed with validated tools, two or more 24 h dietary recall or 3-day dietary records), the diabetes self-management education and support (DSMES), glycemic control, lipid profile and body mass index (BMI). The exclusion criteria were studies without a control group (except for pre-post studies), the lack of randomization and those studies that assessed only a single nutrient, food or meal consumption, as well as reviews, and in-vitro/in-vivo studies. The risk of bias assessment was performed using the Cochrane risk-of-bias tool for randomized trials. A narrative synthesis was performed to present the results. The quality of evidence was assessed with the GRADE guidance. RESULTS: From a total of 5377 records, 12 intervention studies (9 RCT and 3 pre-post intervention studies) were included. The data were assessed in order to perform a meta-analysis; however, the studies were too heterogeneous. The studies showed conflicting results about the effectiveness of MNT on dietary pattern, DSMES, glycemic control, lipid profile and BMI. CONCLUSIONS: Clinical research studies on the effectiveness of MNT in adolescents with type 1 diabetes are scarce. The limited number of studies with a high risk of bias precludes establishing robust conclusions on this issue. Further research is warranted.
Asunto(s)
Diabetes Mellitus Tipo 1 , Terapia Nutricional , Adolescente , Diabetes Mellitus Tipo 1/terapia , Dieta , Conducta Alimentaria , Humanos , Lípidos , Terapia Nutricional/métodosRESUMEN
Aim: The study aim was to assess the association of vitamin D supplementation before hospital admission and severe outcomes in subjects admitted for COVID-19. Methods: We performed a cross-sectional analysis of pseudonymised medical record data from subjects admitted to the Hospital de la Santa Creu i Sant Pau (Barcelona, Spain) for COVID-19 during March and April 2020. The composite primary study outcome was defined as death and/or invasive mechanical ventilation (IMV). Association between risk factors and study outcomes was evaluated by bivariate analysis, followed by logistic regression analysis. Results: In total, 1,267 persons were hospitalised during the observation period. Overall, 14.9% of the subjects were on active vitamin D supplementation treatment before admission. The subjects in the vitamin D group were significantly older than subjects without vitamin D supplementation. We observed higher rates of the primary outcome (death and/or IMV) among the persons with previous use of vitamin D (30.1 vs. 22.9% in those not receiving treatment). In the bivariate analysis, previous use of vitamin D was positively associated with death and/or IMV [odds ratio (OR): 1.45 95% CI: 1.03; 2.04]; however, after adjustment for other risk factors this association disappeared (OR: 1.09 95%CI: 0.65; 1.81). Conclusion: We did not find an association between vitamin D supplementation before hospital admission and death and/or IMV in subjects admitted for COVID-19. The age and the burden of age-associated comorbidities were independently associated with the in-hospital events.
Asunto(s)
COVID-19 , Vitamina D , Estudios Transversales , Suplementos Dietéticos , Humanos , Morbilidad , SARS-CoV-2RESUMEN
SCOPE: Interventions that boost NAD+ availability are of potential therapeutic interest for obesity treatment. The potential of nicotinamide (NAM), the amide form of vitamin B3 and a physiological precursor of nicotinamide adenine dinucleotide (NAD)+ , in preventing weight gain has not previously been studied in vivo. Other NAD+ precursors have been shown to decrease weight gain; however, their impact on adipose tissue is not addressed. METHODS AND RESULTS: Two doses of NAM (high dose: 1% and low dose: 0.25%) are given by drinking water to C57BL/6J male mice, starting at the same time as the high-fat diet feeding. NAM supplementation protects against diet-induced obesity by augmenting global body energy expenditure in C57BL/6J male mice. The manipulation markedly alters adipose morphology and metabolism, particularly in inguinal (i) white adipose tissue (iWAT). An increased number of brown and beige adipocyte clusters, protein abundance of uncoupling protein 1 (UCP1), mitochondrial activity, adipose NAD+ , and phosphorylated AMP-activated protein kinase (P-AMPK) levels are observed in the iWAT of treated mice. Notably, a significant improvement in hepatic steatosis, inflammation, and glucose tolerance is also observed in NAM high-dose treated mice. CONCLUSION: NAM influences whole-body energy expenditure by driving changes in the adipose phenotype. Thus, NAM is an attractive potential treatment for preventing obesity and associated complications.
Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Niacinamida/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos Beige/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones Endogámicos C57BL , Niacinamida/administración & dosificación , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/etiología , Obesidad/prevención & control , Aumento de Peso/efectos de los fármacosRESUMEN
The potential of nicotinamide (NAM) to prevent atherosclerosis has not yet been examined. This study investigated the effect of NAM supplementation on the development of atherosclerosis in a mouse model of the disease. The development of aortic atherosclerosis was significantly reduced (NAM low dose: 45%; NAM high dose: 55%) in NAM-treated, apolipoprotein (Apo)E-deficient mice challenged with a Western diet for 4 weeks. NAM administration significantly increased (1.8-fold) the plasma concentration of proatherogenic ApoB-containing lipoproteins in NAM high-dose (HD)-treated mice compared with untreated mice. However, isolated ApoB-containing lipoproteins from NAM HD mice were less prone to oxidation than those of untreated mice. This result was consistent with the decreased (1.5-fold) concentration of oxidized low-density lipoproteins in this group. Immunohistochemical staining of aortas from NAM-treated mice showed significantly increased levels of IL-10 (NAM low-dose (LD): 1.3-fold; NAM HD: 1.2-fold), concomitant with a significant decrease in the relative expression of TNFα (NAM LD: -44%; NAM HD: -57%). An improved anti-inflammatory pattern was reproduced in macrophages cultured in the presence of NAM. Thus, dietary NAM supplementation in ApoE-deficient mice prevented the development of atherosclerosis and improved protection against ApoB-containing lipoprotein oxidation and aortic inflammation.
RESUMEN
INTRODUCTION: High Density Lipoproteins (HDL) are dysfunctional in hypercholesterolemia patients. The hypothesis was tested that nicotinamide (NAM) administration will influence HDL metabolism and reverse cholesterol transport from macrophages to the liver and feces in vivo (m-RCT) in a murine model of hypercholesterolemia. METHODS: Apolipoprotein E-deficient (KOE) mice were challenged with a high-fat diet for 4 weeks. The effect of different doses of NAM on cholesterol metabolism, and the ability of HDL to promote m-RCT was assessed. RESULTS: The administration of NAM to KOE mice produced an increase (â¼1.5-fold; P<0.05) in the plasma levels of cholesterol, which was mainly accounted for by the non-HDL fraction. NAM produced a [3H]-cholesterol plasma accumulation (â¼1.5-fold) in the m-RCT setting. As revealed by kinetic analysis, the latter was mainly explained by an impaired clearance of circulating non-HDL (â¼0.8-fold). The relative content of [3H]-tracer was lowered in the livers (â¼0.6-fold) and feces (>0.5-fold) of NAM-treated mice. This finding was accompanied by a significant (or trend close to significance) up-regulation of the relative gene expression of Abcg5 and Abcg8 in the liver (Abcg5: 2.9-fold; P<0.05; Abcg8: 2.4-fold; P=0.06) and small intestine (Abcg5: 2.1-fold; P=0.15; Abcg8: 1.9-fold; P<0.05) of high-dose, NAM-treated mice. CONCLUSION: The data from this study show that the administration of NAM to KOE mice impaired m-RCT in vivo. This finding was partly due to a defective hepatic clearance of plasma non-HDL.
Asunto(s)
Apolipoproteínas E/deficiencia , Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Hígado/metabolismo , Niacinamida/administración & dosificación , Complejo Vitamínico B/administración & dosificación , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , Animales , Transporte Biológico/efectos de los fármacos , Colesterol/sangre , Dieta Alta en Grasa , Heces , Expresión Génica , Lipoproteínas/genética , Lipoproteínas HDL , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia ArribaRESUMEN
Cancer is the second leading cause of death worldwide. Compelling evidence supports the hypothesis that the manipulation of dietary components, including plant compounds termed as phytochemicals, demonstrates certain important health benefits in humans, including those in cancer. In fact, beyond their well-known cardiovascular applications, phytosterols may also possess anticancer properties, as has been demonstrated by several studies. Although the mechanism of action by which phytosterols (and derivatives) may prevent cancer development is still under investigation, data from multiple experimental studies support the hypothesis that they may modulate proliferation and apoptosis of tumor cells. Phytosterols are generally considered safe for human consumption and may also be added to a broad spectrum of food matrices; further, they could be used in primary and secondary prevention. However, few interventional studies have evaluated the relationship between the efficacy of different types and forms of phytosterols in cancer prevention. In this context, the purpose of this review was to revisit and update the current knowledge on the molecular mechanisms involved in the anticancer action of phytosterols and their potential in cancer prevention or treatment.
Asunto(s)
Neoplasias/tratamiento farmacológico , Fitosteroles/farmacología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias/patologíaRESUMEN
Dietary phytosterol supplements are readily available to consumers since they effectively reduce plasma low-density lipoprotein cholesterol. Several studies on cell cultures and xenograft mouse models suggest that dietary phytosterols may also exert protective effects against common cancers. We examined the effects of a dietary phytosterol supplement on tumor onset and progression using the well-characterized mouse mammary tumor virus polyoma virus middle T antigen transgenic mouse model of inherited breast cancer. Both the development of mammary hyperplastic lesions (at age 4 weeks) and total tumor burden (at age 13 weeks) were reduced after dietary phytosterol supplementation in female mice fed a high-fat, high-cholesterol diet. A blind, detailed histopathologic examination of the mammary glands (at age 8 weeks) also revealed the presence of less-advanced lesions in phytosterol-fed mice. This protective effect was not observed when the mice were fed a low-fat, low-cholesterol diet. Phytosterol supplementation was effective in preventing lipoprotein oxidation in mice fed the high-fat diet, a property that may explain - at least in part - their anticancer effects since lipoprotein oxidation/inflammation has been shown to be critical for tumor growth. In summary, our study provides preclinical proof of the concept that dietary phytosterols could prevent the tumor growth associated with fat-rich diet consumption.
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Lipoproteínas/metabolismo , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Fitosteroles/farmacología , Animales , Antígenos Virales de Tumores/genética , Antineoplásicos Fitogénicos/farmacología , Peso Corporal/efectos de los fármacos , Colesterol/sangre , Suplementos Dietéticos , Femenino , Lipoproteínas HDL/metabolismo , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Oxidación-ReducciónRESUMEN
Epidemiologic studies have demonstrated that increased high-density lipoprotein cholesterol (HDL-C) is a protective factor against cardiovascular disease. However, the beneficial therapeutic effects of raising HDL-C are proving difficult to confirm in humans. Macrophage-specific reverse cholesterol transport (RCT) is thought to be one of the most important HDL-mediated cardioprotective mechanisms. A new approach was developed to measure in vivo RCT from labeled cholesterol macrophages to liver and feces in mice. Since its original publication, this method has been extensively used to assess the effects of genetic manipulation of pivotal genes involved in HDL metabolism on this major HDL antiatherogenic function in mice. These studies indicate that in vivo macrophage-specific RTC is a strong predictor of atherosclerosis susceptibility compared with steady-state plasma HDL-C levels or other global RCT measurements. This review aims to identify the best molecular targets for improving this HDL antiatherogenic function. Strong evidence supports a positive effect of interventions on macrophage adenosine triphosphate-binding cassette transporter (ABC) A1 and neutral cholesteryl ester hydrolase, apolipoprotein (apo) A-I, apoE, liver scavenger receptor class B type I and ABCG5/G8 on in vivo macrophage-specific RCT and atherosclerosis susceptibility. However, other genetic modifications have yielded conflicting results. Several preclinical studies tested the effects on macrophage-specific RCT in vivo of promising new HDL-based therapeutic agents, which include cholesteryl ester transfer protein inhibitors, apoA-I-directed therapies, liver X receptor and peroxisome proliferator-activated receptor agonists, intestinal cholesterol absorption inhibitors, fish oil and phenolic acid intake, inflammatory modulation and non-nucleoside reverse transcriptase inhibitors. This review also discusses recent findings on the potential effects of these therapeutic approaches on macrophage RCT in mice and cardiovascular risk in humans.
Asunto(s)
Aterosclerosis/metabolismo , Colesterol/metabolismo , Reguladores del Metabolismo de Lípidos/farmacología , Macrófagos/metabolismo , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , HDL-Colesterol/metabolismo , Circulación Enterohepática/efectos de los fármacos , Humanos , Reguladores del Metabolismo de Lípidos/uso terapéutico , Macrófagos/efectos de los fármacos , Terapia Molecular DirigidaRESUMEN
INTRODUCTION: High plasma homocysteine (Hcy) concentration or hyperhomocysteinemia is associated with an increased vascular risk of disease in case-control studies and, to a lesser extent, in prospective studies. DEVELOPMENT: Several large randomized, double-blind, placebo-controlled trials have been already conducted using specific vitamin therapies with the aim of reducing secondary cardiovascular (HOPE, NORVIT, WAFACS and WENBIT studies) and cerebrovascular (VISP study) disease risk. The results from these major secondary prevention trials and one meta-analysis, that included other smaller studies up to 12 of them, showed that treatment decreased plasma Hcy concentration but failed to reduce cardiovascular risk. It is nevertheless noteworthy that a recent meta-analysis addressing the effects of these vitamin treatments on cerebrovascular risk found a positive effect on primary stroke prevention. These data would be consistent with the fact that increased Hcy is known to be associated more strongly with stroke risk than with cardiovascular risk. Moreover, folic acid supplementation in grain food has recently been shown to be associated with a decreased stroke incidence in USA and Canada. CONCLUSIONS: Obviously, these data on primary stroke prevention will require extensive confirmation. However, there now appear to be more reasons to expect a positive outcome of Hcy intervention studies.