RESUMEN
Hemistepsin A (HsA), isolated from Hemistepta lyrata (Bunge) Bunge, has the ability to ameliorate hepatitis in mice. However, the effects of H. lyrata and HsA on other types of liver disease have not been explored. In this report, we investigated the effects of H. lyrata and HsA on liver fibrosis and the underlying molecular mechanisms in activated hepatic stellate cells (HSCs). Based on cell viability-guided isolation, we found HsA was the major natural product responsible for H. lyrata-mediated cytotoxicity in LX-2 cells. HsA significantly decreased the viability of LX-2 cells and primary activated HSCs, increased the binding of Annexin V, and altered the expression of apoptosis-related proteins, suggesting that HsA induces apoptosis in activated HSCs. HsA reduced the phosphorylation of IKKε and the transactivation of nuclear factor-κB (NF-κB). Moreover, HsA decreased the phosphorylation of Akt and its downstream signaling molecules. Transfection experiments suggested that inhibition of NF-κB or Akt is essential for HsA-induced apoptosis of HSCs. In a CCl4-induced liver fibrosis model, HsA administration significantly decreased ALT and AST activities. Furthermore, HsA attenuated CCl4-mediated collagen deposits and profibrogenic genes expression in hepatic tissue. Thus, HsA may serve as a natural product for managing liver fibrosis through inhibition of NF-κB/Akt-dependent signaling.
Asunto(s)
Apoptosis/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Lactonas/farmacología , Cirrosis Hepática/prevención & control , Sesquiterpenos/farmacología , Animales , Línea Celular Transformada , Cloroformo/farmacología , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Oxidative stress induced by reactive oxygen species is the main cause of various liver diseases. This study investigated the hepatoprotective effect of Epimedium koreanum Nakai water extract (EKE) against arachidonic acid (AA)[Formula: see text][Formula: see text][Formula: see text]iron-mediated cytotoxicity in HepG2 cells and carbon tetrachloride (CCl4-)-mediated acute liver injury in mice. Pretreatment with EKE (30 and 100[Formula: see text][Formula: see text]g/mL) significantly inhibited AA[Formula: see text][Formula: see text][Formula: see text]iron-mediated cytotoxicity in HepG2 cells by preventing changes in the expression of cleaved caspase-3 and poly(ADP-ribose) polymerase. EKE attenuated hydrogen peroxide production, glutathione depletion, and mitochondrial membrane dysfunction. EKE also increased the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), transactivated anti-oxidant response element harboring luciferase activity, and induced the expression of anti-oxidant genes. Furthermore, the cytoprotective effect of EKE against AA[Formula: see text][Formula: see text][Formula: see text]iron was blocked in Nrf2 knockout cells. Ultra-performance liquid chromatography analysis showed that EKE contained icariin, icaritin, and quercetin; icaritin and quercetin were both found to protect HepG2 cells from AA[Formula: see text][Formula: see text][Formula: see text]iron via Nrf2 activation. In a CCl4-induced mouse model of liver injury, pretreatment with EKE (300[Formula: see text]mg/kg) for four consecutive days ameliorated CCl4-mediated increases in serum aspartate aminotransferase activity, histological activity index, hepatic parenchyma degeneration, and inflammatory cell infiltration. EKE also decreased the number of nitrotyrosine-, 4-hydroxynonenal-, cleaved caspase-3-, and cleaved poly(ADP-ribose) polymerase-positive cells in hepatic tissues. These results suggest EKE is a promising candidate for the prevention or treatment of oxidative stress-related liver diseases via Nrf2 activation.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Epimedium/química , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Extractos Vegetales/uso terapéutico , Animales , Ácido Araquidónico , Tetracloruro de Carbono/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Modelos Animales de Enfermedad , Células Hep G2 , Humanos , Luciferasas/metabolismo , Masculino , Ratones Endogámicos ICR , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificaciónRESUMEN
Socheongryong-Tang (SCRT) is a natural medicine prescription that has been mainly used in East Asia for the treatment of inflammatory disorders, including asthma and allergic rhinitis. The present study evaluated the anti-inflammatory effects of SCRT on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and in a rat model of carrageenan (CA)-induced paw edema. Levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6 and prostaglandin E2 (PGE2) in the culture supernatant were quantified and nitric oxide (NO) production was monitored. In addition, the effect of SCRT on the protein expression of nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was assessed by western blot analysis. Furthermore, the effects of SCRT on acute inflammation in vivo and changes in the histomorphometry and histopathology of paw skin were observed using CA-treated rats. SCRT (1 mg/ml) inhibited the LPS-induced changes in the protein expression of NF-κB, JNK, ERK1/2, iNOS and COX-2, as well as the production of NO, PGE2 and cytokines. In the rat paw edema assay, administration of 1 g/kg of lyophilized powder obtained from the aqueous extracts of SCRT for 3 consecutive days inhibited the CA-induced increases in skin thickness, mast cell degranulation, and infiltration of inflammatory cells in the ventral and dorsal pedis skin within 4 h. These results demonstrated that SCRT exerts its anti-inflammatory activities in LPS-stimulated RAW 264.7 cells through decreasing the production of inflammatory mediators, including PGE2, NO and cytokines, via suppression of the NF-κB and JNK and ERK1/2 signaling pathways. In addition, the data of the CA-induced paw edema indicated an anti-edema effect of SCRT. SCRT (1 g/kg) reduced acute edematous inflammation through inhibition of mast cell degranulation and infiltration of inflammatory cells. Therefore, the present study provided scientific evidence for the anti-inflammatory activities of SCRT as well as the underlying mechanisms.
Asunto(s)
Antiinflamatorios/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Carragenina , Dinoprostona/inmunología , Medicamentos Herbarios Chinos/farmacología , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/inmunología , Inflamación/inducido químicamente , Inflamación/inmunología , Lipopolisacáridos , Macrófagos/inmunología , Ratones , Óxido Nítrico/inmunología , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/inmunologíaRESUMEN
BACKGROUND: Pelargonium sidoides (PS) and Coptis chinensis root (CR) have traditionally been used to treat various diseases, including respiratory and gastrointestinal infections, dysmenorrhea, and hepatic disorders. The present study was conducted to evaluate the anti-inflammatory effects of a combination of PS and CR in vitro and in vivo. METHODS: The in vitro effects of PS + CR on the induction of inflammation-related proteins were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The levels of nitric oxide (NO) and of inflammatory cytokines and prostaglandin E2 (PGE2) were measured using the Griess reagent and enzyme-linked immunosorbent assay (ELISA) methods, respectively. The expression of inflammation-related proteins was confirmed by Western blot. Additionally, the effects of PS + CR on paw edema volume, skin thickness, and numbers of infiltrated inflammatory cells, mast cells, COX-2-, iNOS-, and TNF-α-immunoreactive cells in dorsum and ventrum pedis skin were evaluated in a rat model of carrageenan (CA)-induced paw edema. RESULTS: PS + CR significantly reduced production of NO, PGE2 and three pro-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6) and also decreased levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with PS + CR significantly reduced the protein expression levels of LPS-stimulated nuclear factor kappa B (NF-κB) and phosphorylated inhibitor of NF-κB (p-I-κBα). Additionally, PS + CR significantly inhibited the increases in paw swelling, skin thickness, infiltrated inflammatory cells, mast cell degranulation, COX-2-, iNOS-, and TNF-α-immunoreactive cells in the rat model of CA-induced acute edematous paw. CONCLUSIONS: These results demonstrate that PS + CR exhibits anti-inflammatory properties through decreasing the production of pro-inflammatory mediators (NO, PGE2, TNF-α, IL-1ß, and IL-6), suppressing NF-κB signaling in LPS-induced RAW 264.7 cells. Additionally, the results of the CA-induced rat paw edema assay revealed an anti-edema effect of PS + CR. Furthermore, it is suggested that PS + CR also inhibits acute edematous inflammation by suppressing mast cell degranulation and inflammatory mediators (COX-2, iNOS, and TNF-α). Thus, PS + CR may be a potential candidate for the treatment of various inflammatory diseases, and it may also contribute to a better understanding of the molecular mechanisms underlying inflammatory response regulation.
Asunto(s)
Coptis/química , Inflamación/metabolismo , FN-kappa B/metabolismo , Pelargonium/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Animales , Citocinas/metabolismo , Edema/metabolismo , Expresión Génica/efectos de los fármacos , Masculino , Mastocitos/efectos de los fármacos , Ratones , Óxido Nítrico/metabolismo , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Piel/efectos de los fármacosRESUMEN
The Buddleja officinalis Maxim. flower is used in traditional Chinese and Korean medicine to treat inflammation, vascular diseases, headache, and stroke, as well as enhance liver function. This research investigated the effects of B. officinalis Maxim. flower extract (BFE) on hepatotoxicity. The cytoprotective effects and mechanism of BFE against severe mitochondrial dysfunction and H2O2 production in hepatotoxicity induced by coadministration of arachidonic acid (AA) and iron were observed in the HepG2 cell line. In addition, we performed blood biochemical, histopathological, and histomorphometric analyses of mice with carbon tetrachloride- (CCl4-) induced acute liver damage. BFE inhibited the AA + iron-mediated hepatotoxicity of HepG2 cells. Moreover, it inhibited mitochondrial dysfunction, H2O2 production, and glutathione depletion mediated by AA + iron in the same cells. Meanwhile, the cytoprotective effects of BFE against oxidative stress were associated with the activation of AMP-activated protein kinase (AMPK). In particular, based on the histopathological observations, BFE (30 and 100 mg/kg) showed clear hepatoprotective effects against CCl4-induced acute hepatic damage. Furthermore, it inhibited 4-hydroxynonenal and nitrotyrosine immunoreactivity in hepatocytes. These results provide evidence that BFE has beneficial hepatoprotective effects against hepatic damage via the activation of AMPK pathway. Accordingly, BFE may have therapeutic potential for diverse liver disorders.
RESUMEN
INTRODUCTION: Severe onychomycosis in the elderly is a common condition and generally difficult to treat. Long-pulsed Nd:YAG (LPNY) laser has been found to be useful in the treatment of onychomycosis. We sought to evaluate the effectiveness of 1,064-nm LPNY laser in the treatment of severe onychomycosis. MATERIALS AND METHODS: Forty nails in 13 patients with severe onychomycosis were divided into two groups. Each group received eight treatment sessions at one-week intervals with 1,064-nm LPNY laser. Parameters for group A were 0.3 ms pulse duration, 5 mm spot size, 16 J/cm(2) fluence, and 10 Hz frequency, and those for group B were 0.6 ms, 2 mm, 225 J/cm(2), and 5 Hz. Clinical and mycological clearance were evaluated at 12 and 24 weeks after initial treatment. RESULTS: Clinical improvements at 12 and 24 weeks presented 47.6 and 57.1% in group A, and 26.3 and 36.8% in group B. In the treated nails with clinical improvement, mycological positive rates at 24 weeks were approximately 40% in both groups. DISCUSSION: The treatment of onychomycosis using 1,064-nm LPNY laser were incomplete in clinical and mycological improvement, and it could imply a lot of potential recurrence. We suggest that 1,064-nm LPNY laser for severe onychomycosis should need additional or combined therapy with other therapeutic options.
Asunto(s)
Dermatosis del Pie/radioterapia , Dermatosis de la Mano/radioterapia , Láseres de Estado Sólido/uso terapéutico , Terapia por Luz de Baja Intensidad , Uñas/efectos de la radiación , Onicomicosis/radioterapia , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Satisfacción del Paciente , Resultado del TratamientoRESUMEN
Glycyrrhizae Radix modulates the neurochemical and locomotor alterations induced by acute psychostimulants in rodents via GABAb receptors. This study investigated the influence of methanol extract from Glycyrrhizae Radix (MEGR) on repeated methamphetamine- (METH-) induced locomotor sensitization and conditioned place preference (CPP). A cohort of rats was treated with METH (1 mg/kg/day) for 6 consecutive days, subjected to 6 days of withdrawal, and then challenged with the same dose of METH to induce locomotor sensitization; during the withdrawal period, the rats were administered MEGR (60 or 180 mg/kg/day). A separate cohort of rats was treated with either METH or saline every other day for 6 days in METH-paired or saline-paired chambers, respectively, to induce CPP. These rats were also administered MEGR (180 mg/kg) prior to every METH or CPP expression test. Pretreatment with MEGR (60 and 180 mg/kg/day) attenuated the expression of METH-induced locomotor sensitization dose-dependently, and 180 mg/kg MEGR significantly inhibited the development and expression of METH-induced CPP. Furthermore, administration of a selective GABAb receptor antagonist (SCH50911) prior to MEGR treatment effectively blocked the inhibitory effects of MEGR on locomotor sensitization, but not CPP. These results suggest that Glycyrrhizae Radix blocked repeated METH-induced behavioral changes via GABAb receptors.
RESUMEN
Since antiquity, medical herbs have been prescribed for both treatment and preventative purposes. Herbal formulas are used to reduce toxicity as well as increase efficacy in traditional Korean medicine. U-bang-haequi tang (UBT) is a herbal prescription containing Arctii fructus and Forsythia suspensa as its main components and has treated many human diseases in traditional Korean medicine. This research investigated the effects of UBT against an acute phase of inflammation. For this, we measured induction of nitric oxide (NO) and related proteins in macrophage cell line stimulated by lipopolysaccharide (LPS). Further, paw swelling was measured in carrageenan-treated rats. Carrageenan significantly induced activation of inflammatory cells and increases in paw volume, whereas oral administration of 0.3 or 1 g/kg/day of UBT inhibited the acute inflammatory response. In RAW264.7 cells, UBT inhibited mRNA and protein expression levels of iNOS. UBT treatment also blocked elevation of NO production, nuclear translocation of NF-κB, phosphorylation of Iκ-Bα induced by LPS. Moreover, UBT treatment significantly blocked the phosphorylation of p38 and c-Jun NH2-terminal kinases by LPS. In conclusion, UBT prevented both acute inflammation in rats as well as LPS-induced NO and iNOS gene expression through inhibition of NF-κB in RAW264.7 cells.
RESUMEN
In this study, we aimed to identify the compounds in Eclipta prostrata responsible for its anti-inflammatory effects using an in vitro bioassay. Three triterpenoids, eclalbasaponin I, eclalbasaponin II, and echinocystic acid, were isolated from an EtOAc fraction of the 70 % EtOH extract of E. prostrata by activity-guided fractionation based on the inhibition of nitric oxide release from lipopolysaccharide-induced RAW 264.7 macrophages. Of these three triterpenoids, echinocystic acid inhibited lipopolysaccharide-induced production of nitric oxide and cytokines such as tumor necrosis factor-α and interleukin-6. Consistent with these observations, echinocystic acid concentration-dependently inhibited lipopolysaccharide-induced inducible nitric oxide synthase expression at the protein level and inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-6 expression at the mRNA level, and inhibited lipopolysaccharide-induced iNOS promoter binding activity. In addition, echinocystic acid suppressed the lipopolysaccharide-induced transcriptional activity of nuclear factor-κB by blocking the nuclear translocation of p65.
Asunto(s)
Antiinflamatorios/farmacología , Eclipta/química , FN-kappa B/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Triterpenos/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/farmacología , Plantas Medicinales , Saponinas/química , Saponinas/aislamiento & purificación , Saponinas/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia princeps Pampanini (Asteraceae) is used as a traditional medicine to immune function-related diseases, such as dysmenorrhea, inflammation, cancer, and ulcers. AIM OF THE STUDY: The purpose of this study is to evaluate the immunostimulatory effects of the hot water extract from the leaves of Artemisia princeps Pampanini (WAPP) in recombinant interferon-γ (rIFN-γ)-primed RAW 264.7 macrophages and in cyclophosphamide (20mg/kg, i.p.)-induced immunosuppressed Sprague-Dawley rats. MATERIALS AND METHODS: RAW 264.7 macrophages were treated with WAPP and production and expressions of nitric oxide (NO) and tumor necrosis factor-α (TNF-α) via nuclear factor-κB (NF-κB) were detected by immunoassay, western blot, qRT-PCR and reporter gene assay. In addition, in vivo immunomodulatory activity was studied by cyclophosphamide-induced myelosuppression in rats. RESULTS: In rIFN-γ-primed RAW 264.7 macrophages, pretreatment with WAPP increased the productions of nitric oxide (NO) and tumor necrosis factor-α (TNF-α),and increased the expressions of inducible nitric oxide synthase (iNOS) at the protein level and of iNOS and TNF-α at the mRNA level. Molecular data revealed that WAPP upregulated the transcriptional activity and translocation of nuclear factor-κB (NF-κB) by activating inhibitory kappa B-α (IκB-α) degradation and phosphorylation. Furthermore, WAPP upregulated the phosphorylations of p38 MAP kinase, c-Jun NH2-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2). In cycloheximide-induced immunosuppressed rats, pretreatment with WAPP (100, 200, or 400mg/kg, p.o.) increased the serum levels of albumin and globulin, and reduced immobility times. CONCLUSION: Our results suggest that upregulations of the expressions of iNOS and TNF-α via the activations of NF-κB and MAPK are responsible for the immunostimulatory effects of WAPP.
Asunto(s)
Adyuvantes Inmunológicos/farmacología , Artemisia/química , Etnofarmacología , Medicina Tradicional Coreana , Extractos Vegetales/farmacología , Adyuvantes Inmunológicos/aislamiento & purificación , Animales , Técnicas de Cultivo de Célula , Línea Celular , Calor , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Óxido Nítrico/biosíntesis , Óxido Nítrico/inmunología , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Ratas , Ratas Sprague-Dawley , República de Corea , Natación , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunología , Agua/químicaRESUMEN
Pyungwi-san (PWS) is a traditional basic herbal formula. We investigated the effects of PWS on induction of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor- α (TNF- α )) and nuclear factor-kappa B (NF- κ B) as well as mitogen-activated protein kinases (MAPKs) in lipopolysaccharide-(LPS-) induced Raw 264.7 cells and on paw edema in rats. Treatment with PWS (0.5, 0.75, and 1 mg/mL) resulted in inhibited levels of expression of LPS-induced COX-2, iNOS, NF- κ B, and MAPKs as well as production of prostaglandin E2 (PGE2), nitric oxide (NO), IL-6, and TNF- α induced by LPS. Our results demonstrate that PWS possesses anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the signaling pathways of NF- κ B and MAPKs in LPS-induced macrophage cells. More importantly, results of the carrageenan-(CA-) induced paw edema demonstrate an anti-edema effect of PWS. In addition, it is considered that PWS also inhibits the acute edematous inflammations through suppression of mast cell degranulations and inflammatory mediators, including COX-2, iNOS and TNF- α . Thus, our findings may provide scientific evidence to explain the anti-inflammatory properties of PWS in vitro and in vivo.