Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mar Drugs ; 22(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667767

RESUMEN

Chitosan (CH) shows great potential as an immunostimulatory feed additive in aquaculture. This study evaluates the effects of varying dietary CH levels on the growth, immunity, intestinal morphology, and antioxidant status of Nile tilapia (Oreochromis niloticus) reared in a biofloc system. Tilapia fingerlings (mean weight 13.54 ± 0.05 g) were fed diets supplemented with 0 (CH0), 5 (CH5), 10 (CH10), 20 (CH20), and 40 (CH40) mL·kg-1 of CH for 8 weeks. Parameters were assessed after 4 and 8 weeks. Their final weight was not affected by CH supplementation, but CH at 10 mL·kg-1 significantly improved weight gain (WG) and specific growth rate (SGR) compared to the control (p < 0.05) at 8 weeks. Skin mucus lysozyme and peroxidase activities were lower in the chitosan-treated groups at weeks 4 and 8. Intestinal villi length and width were enhanced by 10 and 20 mL·kg-1 CH compared to the control. However, 40 mL·kg-1 CH caused detrimental impacts on the villi and muscular layer. CH supplementation, especially 5-10 mL·kg-1, increased liver and intestinal expressions of interleukin 1 (IL-1), interleukin 8 (IL-8), LPS-binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione S-transferase (GST-α) compared to the control group. Overall, dietary CH at 10 mL·kg-1 can effectively promote growth, intestinal morphology, innate immunity, and antioxidant capacity in Nile tilapia fingerlings reared in biofloc systems.


Asunto(s)
Alimentación Animal , Acuicultura , Quitosano , Cíclidos , Intestinos , Animales , Quitosano/farmacología , Cíclidos/crecimiento & desarrollo , Cíclidos/inmunología , Cíclidos/metabolismo , Intestinos/efectos de los fármacos , Acuicultura/métodos , Suplementos Dietéticos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Expresión Génica/efectos de los fármacos
2.
J Med Food ; 27(4): 359-368, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526569

RESUMEN

As the body's largest organ, the skin is located at the internal and external environment interface, serving as a line of defense against various harmful stressors. Recently, marine-derived physiologically active ingredients have attracted considerable attention in the cosmeceutical industry due to their beneficial effects on skin health. Sargassum, a genus of brown macroalgae, has traditionally been consumed as food and medicine in several countries and is rich in bioactive compounds such as meroterpenoids, sulfated polysaccharides, fucoidan, fucoxanthin, flavonoids, and terpenoids. Sargassum spp. have various beneficial effects on skin disorders. They help with atopic dermatitis by improving skin barrier protection and reducing inflammation. Several species show potential in treating acne by inhibiting bacterial growth and reducing inflammation. Some species, such as Sargassum horneri, demonstrate antiallergic effects by modulating mast cell activity. Certain Sargassum species exhibit anticancer activity by inhibiting tumor growth and promoting apoptosis, and some species help with wound healing by promoting angiogenesis and reducing oxidative stress. Overall, Sargassum spp. demonstrate potential for treating and managing various skin conditions. Therefore, the bioactive compounds of Sargassum spp. may be natural ingredients with a wide range of functional properties for preventing and treating skin disorders. The present review focused on the various biological effects of Sargassum extracts and derived compounds on skin disorders.


Asunto(s)
Sargassum , Algas Marinas , Humanos , Inflamación , Piel , Terpenos
3.
Planta Med ; 90(1): 25-37, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37848042

RESUMEN

This study aims to explore the anti-inflammatory mechanisms of sargachromenol in both RAW 264.7 cells and lipopolysaccharide (LPS)-treated mice, as previous reports have suggested that sargachromenol possesses anti-aging, anti-inflammatory, antioxidant, and neuroprotective properties. Although the precise mechanism behind its anti-inflammatory activity remains unclear, pretreatment with sargachromenol effectively reduced the production of nitric oxide, prostaglandin E2, and interleukin (IL)-1ß in LPS-stimulated RAW 264.7 cells by inhibiting cyclooxygenase-2. Moreover, sargachromenol inhibited the activation of nuclear factor-κB (NF-κB) by preventing the degradation of the inhibitor of κB-α (IκB-α) and inhibiting protein kinase B (Akt) phosphorylation in LPS-stimulated cells. We also found that sargachromenol induced the production of heme oxygenase-1 (HO-1) by activating the nuclear transcription factor erythroid-2-related factor 2 (Nrf2). In LPS-treated mice, oral administration of sargachromenol effectively reduced the levels of IL-1ß, IL-6, and tumor necrosis factor-α (TNF-α) in the serum, suggesting its ability to suppress the production of inflammatory mediators by inhibiting the Akt/NF-κB pathway and upregulating the Nrf2/HO-1 pathway.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Células RAW 264.7 , Lipopolisacáridos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antiinflamatorios/farmacología , Hemo-Oxigenasa 1/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ciclooxigenasa 2/metabolismo
4.
Food Sci Biotechnol ; 32(2): 221-228, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36647521

RESUMEN

Pollutant exposure due to industrial development increases oxidative stress in human bodies. Dietary intake of antioxidant shows a protective effect against oxidative damage induced by oxidative stress. Therefore, the development of natural antioxidants is needed. In this study, the antioxidant activities of some Nepali medicinal plant extracts were measured. Using Rose bengal and 3,3',5,5'-tetramethylbenzidine, a novel assay was utilized to evaluate the singlet oxygen scavenging capacity, and showed a strong correlation with other antioxidant assays. Also, antioxidant capacities based on four assays including the singlet oxygen scavenging assay were highly correlated (≥ 0.858) with the total phenolic contents in the medicinal plant extracts. Among the selected extracts, Persicaria capitata, Elaphoglossum marginatum and Eurya acuminata showed the highest antioxidant capacities. Overall, this study presents a novel approach for evaluating singlet oxygen scavenging capacity, and performed a screening of antioxidant capacities of 54 Nepali herbal medicines. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01175-z.

5.
Fitoterapia ; 163: 105342, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36330897

RESUMEN

Ishophloroglucin A (IPA) is one of the most abundant and active compounds in Ishige okamurae and is known to be a potential therapeutic candidate for the improvement of metabolic diseases. However, IPA on the inhibitory effects of protein tyrosine phosphatase 1B (PTP1B) and adipogenesis have not been determined. In this study, we investigated the effects of IPA on the inhibition of PTP1B, the effects on adipogenesis, and its mechanisms of action in 3 T3-L1 adipocytes. The IC50 value of IPA against PTP1B was 0.43 µM, which evidenced the higher inhibition activity than that of ursolic acid, a known PTP1B inhibitor. For further insight, we predicted the 3D structure of PTP1B and used a docking algorithm to simulate the binding between PTP1B and IPA. Molecular docking studies revealed a high and stable binding affinity between IPA and PTP1B and indicated that the IPA could interacts with the amino acid residues located in a region to the active site of PTP1B. Further studies showed that IPA concentrations between 6.25 µM and 25 µM dose-dependently attenuated adipogenesis, which was accompanied by a reduction in adipogenesis-related factors, including PPARγ, C/EBPα, SREBP-1c, and FABP4. Our findings suggested that IPA may be a promising natural compound for the treatment of obesity and related diseases.


Asunto(s)
Adipogénesis , Phaeophyceae , Ratones , Animales , Células 3T3-L1 , Simulación del Acoplamiento Molecular , Estructura Molecular , Adipocitos , Phaeophyceae/química , Inhibidores Enzimáticos/farmacología
6.
J Food Biochem ; 46(12): e14493, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309949

RESUMEN

Potential anti-inflammatory effects of ark shell (Scapharca subcrenata) protein hydrolysates were investigated. Ark shell protein hydrolysates were prepared using Alcalase® and pepsin and were designated ASAH and ASPH, respectively. The nitric oxide (NO) inhibitory activity of ASAH and ASPH was determined in lipopolysaccharides (LPS)-stimulated RAW264.7 murine macrophages, and the results showed that ASAH inhibited better NO inhibitory activity than ASPH. ASAH suppressed inflammatory mediator, a prostaglandin E2, secretion of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6), and production of reactive oxygen species (ROS) dose dependently. It inhibited the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and simulated heme oxygenase-1 (HO-1) protein expression. However, the pharmacological approach revealed that pretreatment with zinc protoporphyrin ІX (ZnPP), an inhibitor of HO-1, reversed the anti-inflammatory effect of ASAH. Moreover, ASAH upregulated phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2, JNK1/2, and p38 MAPK. To find out the role of MAPKs phosphorylation, MAPKs inhibitors were used, and the results showed that ASAH-mediated HO-1 protein expression and Nrf2 nuclear translocation were abolished. Taken all together, this study revealed that ASAH has a potential anti-inflammatory activity through regulation of the MAPK-dependent HO-1/Nrf2 pathway. PRACTICAL APPLICATIONS: Food-derived marine bioactive peptides, due to their pivotal role in biological activities, are gaining much attention recently. However, the anti-inflammatory activities of ark shell protein hydrolysates still remain to be investigated. This study investigated that ASAH shows potential anti-inflammatory activities through regulation of the MAPK-dependent HO-1/Nrf2 pathway in RAW264.7 murine macrophages. These findings indicated that ASAH may be used as a dietary supplement, functional food, and medicinal drug for the management of inflammation and inflammation-associated diseases.


Asunto(s)
Arcidae , Scapharca , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Arcidae/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos , Macrófagos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/metabolismo , Células RAW 264.7 , Scapharca/metabolismo
7.
J Photochem Photobiol B ; 234: 112527, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35914464

RESUMEN

In recent decades, the laser treatment of cancer has been introduced as a promising treatment option. Because of the maldistribution of optical energy and an ambiguous boundary between the normal and tumor tissues, laser irradiation can stimulate residual cancer cells, leading to a cancer regrowth. As photobiomodulation (PBM) is involved in an extensive range of cellular responses, profound comprehension of photo-stimulated mechanisms against the cancer cells is required to establish a safety margin for PBM. Therefore, we aimed to identify the stimulant effects of PBM at various wavelengths against the tumor cells to establish a safety margin for the laser treatment. CT26 murine colon cancer cells were exposed to either 405 (BL), 635 (VIS), or 808 (NIR) nm laser lights at the fluences of 0, 10, 30, and 50 J/cm2. In addition, CT26 tumor-bearing mice were irradiated with BL, VIS, or NIR at a fluence of 30 J/cm2. Both the proliferation and angiogenesis potential of the CT26 cells and tumors were evaluated using the MTT assay, western blot, and immunohistochemistry (IHC) staining analyses. Although cell viability was not statistically significant, BL significantly induced p-ERK upregulation in the CT26 cells, indicating that PBM with BL can stimulate proliferation. In vivo tests showed that the NIR group exhibited the maximum relative tumor volume, and BL yielded a slight increase compared to the control. In the IHC staining and western blot analyses, both BL and NIR increased the expression of EGFR, VEGF, MMP-9, and HIF-1α, which are related to the proliferation and angiogenesis-related factors. Further investigations will be pursued to clarify the molecular pathways that depend on the cancer cell types and laser wavelengths for the establishment of safety guidelines in clinical environments.


Asunto(s)
Neoplasias del Colon , Terapia por Luz de Baja Intensidad , Animales , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Neoplasias del Colon/radioterapia , Luz , Ratones
8.
Mar Drugs ; 19(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34822472

RESUMEN

With the advancement of nanotechnology, several nanoparticles have been synthesized as antimicrobial agents by utilizing biologically derived materials. In most cases, the materials used for the synthesis of nanoparticles from natural sources are extracts. Natural extracts contain a wide range of bioactive components, making it difficult to pinpoint the exact component responsible for nanoparticle synthesis. Furthermore, the bioactive component present in the extract changes according to numerous environmental factors. As a result, the current work intended to synthesize gold (AuNPs) and zinc oxide (ZnONPs) nanoparticles using pure phloroglucinol (PG). The synthesized PG-AuNPs and PG-ZnONPs were characterized using a UV-Vis absorption spectrophotometer, FTIR, DLS, FE-TEM, zeta potential, EDS, and energy-dispersive X-ray diffraction. The characterized PG-AuNPs and PG-ZnONPs have been employed to combat the pathogenesis of Pseudomonas aeruginosa. P. aeruginosa is recognized as one of the most prevalent pathogens responsible for the common cause of nosocomial infection in humans. Antimicrobial resistance in P. aeruginosa has been linked to the development of recalcitrant phenotypic characteristics, such as biofilm, which has been identified as one of the major obstacles to antimicrobial therapy. Furthermore, P. aeruginosa generates various virulence factors that are a major cause of chronic infection. These PG-AuNPs and PG-ZnONPs significantly inhibit early stage biofilm and eradicate mature biofilm. Furthermore, these NPs reduce P. aeruginosa virulence factors such as pyoverdine, pyocyanin, protease, rhamnolipid, and hemolytic capabilities. In addition, these NPs significantly reduce P. aeruginosa swarming, swimming, and twitching motility. PG-AuNPs and PG-ZnONPs can be used as control agents for infections caused by the biofilm-forming human pathogenic bacterium P. aeruginosa.


Asunto(s)
Antibacterianos/farmacología , Oro/farmacología , Extractos Vegetales/farmacología , Óxido de Zinc/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Oro/química , Humanos , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Nanotecnología , Fitoterapia , Extractos Vegetales/química , Pseudomonas aeruginosa/efectos de los fármacos , Óxido de Zinc/química
9.
Int J Biol Macromol ; 156: 1565-1573, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786298

RESUMEN

Alginate and pectin have been widely employed together in various industrial and biomedical applications due to their synergistic interaction. Although alginate and pectin have been used as composite materials in films, gels, and particles, research characterizing their properties in foams is scarce. Thus, in the present study, we fabricated alginate-pectin composite foams with different blending ratios (9:1, 7:3, and 5:5) using calcium ion cross-linking and characterized their properties. It was found that the G' values of rehydrated alginate-pectin 9:1 foam was higher than those of the other rehydrated foams in the rheological behavior. In addition, higher pectin levels in the composite foams led to more water being absorbed during swelling tests and the higher release of BSA in drug-release testing. In indirect and direct cytotoxicity testing, none of the foams exhibited cell cytotoxicity for fibroblast and keratinocyte cells. These results suggest that controlling the pectin content in alginate-pectin foams is key to adjusting their mechanical properties, water absorption, and drug-release ability. In addition, alginate-pectin composite foams are promising candidates for use in wound-dressing applications.


Asunto(s)
Alginatos/química , Vendajes , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Pectinas/química , Cicatrización de Heridas/efectos de los fármacos , Vendajes/microbiología , Línea Celular , Reología
10.
Phytother Res ; 33(3): 737-744, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30570192

RESUMEN

The aim of the present study was to investigate the effect of 5-bromo-3,4-dihydroxybenzaldehyde (BD) isolated from Polysiphonia morrowii on adipogenesis and differentiation of 3T3-L1 preadipocytes into mature adipocytes and its possible mechanism of action. Levels of lipid accumulation and triglyceride were significantly lower in BD treated cells than those in untreated cells. In addition, BD treatment reduced protein expression levels of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding proteins α, and sterol regulatory element-binding protein 1 compared with control (no treatment). It also reduced expression levels of adiponectin, leptin, fatty acid synthase, and fatty acid binding protein 4. AMP-activated protein kinase activation was found to be one specific mechanism involved in the effect of BD. These results demonstrate that BD possesses inhibitory effect on adipogenesis through activating AMP-activated protein kinase signal pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Adipogénesis/efectos de los fármacos , Benzaldehídos/farmacología , Rhodophyta/química , Células 3T3-L1 , Animales , Benzaldehídos/aislamiento & purificación , Diferenciación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos
11.
Artículo en Inglés | MEDLINE | ID: mdl-29681981

RESUMEN

Marine algae have valuable health and dietary benefits. The present study aimed to investigate whether an ethanol extract of Carpomitra costata (CCE) could inhibit the inflammatory response to LPS. CCE attenuated the production of proinflammatory mediators, such as prostaglandin E2 (PGE2) and nitric oxide (NO), by inhibiting inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-induced RAW264.7 macrophages. CCE also inhibited the expression of proinflammatory cytokines such as IL-1ß, TNF-α, and IL-6. CCE suppressed the LPS-induced DNA-binding activity of (NF-κB) and activator protein-1 (AP-1). In addition, CCE attenuated the LPS-stimulated phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK) and phosphatidylinositol 3'-kinase/Akt (PI3K/Akt). Functional aspects of the JNK and Akt signaling pathways were analyzed using specific inhibitors, which attenuated the LPS-induced production of proinflammatory cytokines, and NO and PGE2 expression by suppressing AP-1 and NF-κB activity. In particular, the AP-1 signaling pathway is not involved in the production of inflammatory cytokines, such as IL-6, TNF-α, and IL-1ß. These results suggested that CCE might exert its anti-inflammatory action by downregulating transcriptional factors (NF-κB and AP-1) through JNK and Akt signaling pathways. The current study suggested that CCE might be a valuable candidate for the treatment of inflammatory disorders.

12.
Eur J Pharm Biopharm ; 123: 20-30, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29154833

RESUMEN

Photodynamic therapy (PDT) and photothermal therapy (PTT) using nanoparticles have gained significant attention for its therapeutic effect for cancer treatment. In the present study, we fabricated polypyrrole nanoparticles by employing bovine serum albumin-phycocyanin complex and the formulated particles were stable in various physiological solutions like water, phosphate buffered saline and culture media. The formulated nanoparticles did not cause any noticeable toxicity to MDA-MB-231 and HEK-293 cells. The obtained nanoparticles effectively killed MDA-MB-231 cells in a dual way upon laser illumination, one is through phycocyanin propagated reactive oxygen species (PDT) upon laser illumination and in another way it eradicated the treated cells by converting optical energy into heat energy (PTT). Additionally, the nanoparticles generated good amplitude of ultrasound signals under photoacoustic imaging (PAT) system that facilitates imaging of treated cells. In conclusion, the fabricated particles could be used as a multimodal therapeutic agent for treatment of cancer in the biomedical field.


Asunto(s)
Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Ficocianina/química , Polímeros/química , Pirroles/química , Línea Celular , Línea Celular Tumoral , Química Farmacéutica/métodos , Células HEK293 , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Bovina/química
13.
Mol Med Rep ; 17(1): 2044-2050, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29257215

RESUMEN

Fermented microalgae Pavlova lutheri (P. lutheri), the product of Hansenula polymorpha fermentation, exhibited an increase in alkaline phosphatase (ALP) activity in MG­63 osteoblastic cells when compared to that of non­fermented P. lutheri. Fractionation of the fermented P. lutheri resulted in identification of the active peptide [peptide of P. lutheri fermentation (PPLF)] with the sequence of EPQWFL. PPLF significantly increased ALP release from MG­63 cells and mineralization in a dose­dependent manner. In addition, the intracellular levels of ALP and osteocalcin (OCN) proteins were augmented by PPLF treatment. To identify the molecular mechanism underlying the effect of PPLF on osteoblastic differentiation, the phosphorylation levels of the mitogen­activated protein kinases, p38, extracellular signal­regulated kinases 1/2 and Jun, and nuclear factor (NF)­κB were determined following PPLF treatment and the differences in expression were analyzed using p38 and NF­κB selective inhibitors. These results concluded that PPLF from fermented P. lutheri induced osteoblastic differentiation by increasing ALP and OCN release in MG­63 cells via the p38/p65 signaling pathway, indicating that PPLF supplement may be effective for therapeutic application in the field of bone health.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Haptophyta/química , Microalgas/química , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Péptidos/farmacología , Fosfatasa Alcalina/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Línea Celular , Fermentación , Humanos , Osteoblastos/citología , Osteocalcina/metabolismo , Péptidos/química
14.
Mol Nutr Food Res ; 59(1): 129-38, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25379652

RESUMEN

Marine polysaccharides have been found as the principle component in cell wall structures of seaweeds or exoskeletons of crustaceans. Due to numerous pharmaceutical properties of marine polysaccharides such as antioxidant, anti-inflammatory, antiallergic, antitumor, antiobesity, antidiabetes, anticoagulant, antiviral, immunomodulatory, cardioprotective, and antihepatopathy activities, they have been applied in many fields of biomaterials, food, cosmetic, and pharmacology. Recently, several marine polysaccharides such alginate, porphyran, fucoidan, and chitin and its derivatives have been evidenced as downregulators of allergic responses due to enhancement of innate immune system, alteration of Th1/Th2 balance forward to Th1 cells, inhibition of IgE production, and suppression of mast cell degranulation. This contribution, therefore, focuses on antiallergic properties of marine polysaccharides and emphasizes their potential application as bioactive food ingredients as well as nutraceuticals for prevention of allergic disorders.


Asunto(s)
Alginatos/farmacología , Quitina/farmacología , Hipersensibilidad/tratamiento farmacológico , Polisacáridos/farmacología , Algas Marinas/química , Sefarosa/análogos & derivados , Alginatos/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Antivirales/química , Antivirales/farmacología , Quitina/análogos & derivados , Quitina/química , Quitosano/química , Quitosano/farmacología , Suplementos Dietéticos , Ácido Glucurónico/química , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/química , Ácidos Hexurónicos/farmacología , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Mastocitos/inmunología , Oligosacáridos , Polisacáridos/química , Sefarosa/química , Sefarosa/farmacología , Balance Th1 - Th2
15.
Int J Pediatr Otorhinolaryngol ; 78(3): 465-70, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24418183

RESUMEN

OBJECTIVE: To assess whether this compound (ALH-L1005) is conceivably an effective agent in protecting against cochlear damage induced by LPS. MATERIALS AND METHODS: Tube formation using human umbilical vein endothelial cell (HUVEC) and matrix metalloproteinase (MMP)-9 inhibition assay was performed. 24 guinea pigs were randomly divided into three groups. Intratympanic instillation of LPS (n=8) as negative control, instillation of oxytetracycline 1h after LPS as positive control (n=8), and intratympanic instillation of ALH-L1005 (n=8) 1h after LPS were considered experimental group. Evaluation by auditory brainstem response (ABR) measurement, cochlear blood flow, and blood-labyrinth barrier (BLB) permeability were performed. Cochlear hair cells were observed by field emission-scanning electron microscopy (FE-SEM). MMP-9 activation was measured by gelatin zymography. RESULTS: For HUVEC, the tube formation was suppressed in a dose dependant manner. ALH-L1005 inhibited the MMP-9 activity prominently. It also attenuated the elevation of LPS-induced hearing threshold shift and recovery of CBF. By FE-SEM, cochlear hair cells could be preserved in experimental group. ALH-L1005 significantly reduced the BLB opening compared to LPS group. Active MMP-9 expression could be detected in the LPS group. In contrast to ALH-L1005 group, active MMP-9 expression was not detected. CONCLUSION: Our results conclude that ALH-L1005 showed a protective effect in the cochlear lateral wall damage induced by LPS.


Asunto(s)
Aesculus , Cóclea/patología , Laberintitis/tratamiento farmacológico , Laberintitis/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Administración Tópica , Animales , Cóclea/efectos de los fármacos , Modelos Animales de Enfermedad , Endotoxinas/farmacología , Endotoxinas/toxicidad , Cobayas , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Laberintitis/prevención & control , Lipopolisacáridos/farmacología , Lipopolisacáridos/toxicidad , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Microscopía Electrónica de Rastreo , Preparaciones de Plantas/administración & dosificación , Distribución Aleatoria , Valores de Referencia
16.
Bioprocess Biosyst Eng ; 36(11): 1725-34, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23584739

RESUMEN

Biomedical scaffolds should be designed with highly porous three-dimensional (3D) structures that have mechanical properties similar to the replaced tissue, biocompatible properties, and biodegradability. Here, we propose a new composite composed of solid free-form fabricated polycaprolactone (PCL), bone morphogenic protein (BMP-2) or bone formation peptide (BFP-1), and alginate for bone tissue regeneration. In this study, PCL was used as a mechanical supporting component to enhance the mechanical properties of the final biocomposite and alginate was used as the deterring material to control the release of BMP-2 and BFP-1. A release test revealed that alginate can act as a good release control material. The in vitro biocompatibilities of the composites were examined using osteoblast-like cells (MG63) and the alkaline phosphatase (ALP) activity and calcium deposition were assessed. The in vitro test results revealed that PCL/BFP-1/Alginate had significantly higher ALP activity and calcium deposition than the PCL/BMP-2/Alginate composite. Based on these findings, release-controlled BFP-1 could be a good growth factor for enhancement of bone tissue growth and the simple-alginate coating method will be a useful tool for fabrication of highly functional biomaterials through release-control supplementation.


Asunto(s)
Alginatos/química , Materiales Biocompatibles , Proteínas Morfogenéticas Óseas/química , Huesos/fisiología , Poliésteres/química , Regeneración , Secuencia de Aminoácidos , Línea Celular , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Osteoblastos/citología
17.
J Mater Chem B ; 1(42): 5831-5841, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-32261240

RESUMEN

Here, we propose a new combinational method supplemented with melt-plotting and in situ plasma treatment to improve the coating ability of chitosan solution. Using the proposed method, the hydrophobic surface of poly(ε-caprolactone) (PCL) was altered to a hydrophilic surface to facilitate homogeneous coating of the micro-structured PCL scaffold with chitosan of various molecular weights. The fabricated chitosan-coated PCL scaffolds were assessed in terms of not only physical properties, including tensile strength and water uptake ability, but also biological capabilities by culturing osteoblast-like cells (MG63) in the presence of coatings of chitosan of various molecular weights (1-5, 5-10, and >10 kDa). The chitosan-based scaffolds showed complete water absorption ability and significantly increased mechanical properties (13-36% increase in Young's modulus) compared to the untreated PCL scaffold. A number of assays (fluorescence analysis, alkaline phosphatase (ALP) activity, and calcium deposition) indicated that the scaffold coated with high-molecular-weight chitosan induced highly active cellular responses that would be of interest for bone-tissue regeneration.

18.
Environ Toxicol Pharmacol ; 34(3): 926-34, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22999063

RESUMEN

Ultraviolet-B (UV-B) irradiation has been known to generate oxidative stress by increasing reactive oxygen species (ROS) in skin cells. Several naturally occurring antioxidant compounds isolated from marine algae are believed to protect against ROS. In this study, we assessed the antioxidative effect of eckstolonol isolated from Ecklonia cava against UV-B-induced ROS in human keratinocytes (HaCaTs). We investigated the effects of photo-oxidative stress by UV-B (50 mJ/cm(2)) and the antioxidative effects of eckstolonol using fluorometry, flow cytometry, microscopy, and cell viability and comet assays. UV-B irradiation decreased cell viability, which was restored in a dose-dependent manner with eckstolonol treatment (0, 5, 50, 100, and 200 µM). Moreover, eckstolonol reduced UV-B-induced ROS, lipid peroxidation, damaged DNA levels, and cell death. These antioxidative effects seem to be due to the enzymatic activities of catalase (CAT) and superoxide dismutase (SOD). Collectively, these results indicate that eckstolonol is capable of protecting keratinocytes from photo-oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Dioxanos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Rayos Ultravioleta , Catalasa/metabolismo , Línea Celular , Supervivencia Celular , Ensayo Cometa , Humanos , Queratinocitos , Peroxidación de Lípido/efectos de los fármacos , Phaeophyceae , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
19.
Adv Food Nutr Res ; 65: 287-95, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22361195

RESUMEN

A most common and trusted source of Ca is milk or other dairy products. However, some oriental people do not drink milk due to lactose indigestion and intolerance, which make them allergic to milk. There have been many studies on alternative calcium-rich diet or Ca supplements. Among them, teleost fish like anchovy and mola, which are commonly consumed in Asian countries, could be an important Ca dietary supplement, especially in population groups with low intakes of milk and dairy products. In this chapter, we summarize beneficial effects of teleost fish bone peptide (FBP) for Ca bioavailability and bone mineralization, based on our researches.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Huesos/metabolismo , Proteínas de Unión al Calcio/uso terapéutico , Suplementos Dietéticos , Proteínas de Peces/uso terapéutico , Peces/metabolismo , Fragmentos de Péptidos/uso terapéutico , Animales , Conservadores de la Densidad Ósea/aislamiento & purificación , Conservadores de la Densidad Ósea/metabolismo , Calcio de la Dieta/administración & dosificación , Calcio de la Dieta/metabolismo , Calcio de la Dieta/uso terapéutico , Proteínas de Unión al Calcio/aislamiento & purificación , Proteínas de Unión al Calcio/metabolismo , Proteínas de Peces/aislamiento & purificación , Proteínas de Peces/metabolismo , Humanos , Absorción Intestinal , Osteogénesis , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo
20.
J Biosci ; 36(5): 869-77, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22116285

RESUMEN

Marine algae have been utilized in food as well as medicine products for a variety of purposes. The purpose of this study was to determine whether an ethanol extract of Polyopes affinis (P.affinis) can inhibit the pathogenesis of T helper 2 (Th2)-mediated allergen-induced airway inflammation in a murine model of asthma. Mice that were sensitized and challenged with ovalbumin (OVA) evidenced typical asthmatic reactions such as the following: an increase in the number of eosinophils in the bronchoalveolar lavage (BAL) fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways as well as the narrowing of the airway luminal; the development of airway hyperresponsiveness (AHR); the presence of pulmonary Th2 cytokines; and the presence of allergenspecific immunoglobulin E (IgE) in the serum. The successive intraperitoneal administration of P. affinis ethanolic extracts before the last airway OVA-challenge resulted in a significant inhibition of all asthmatic reactions. These data suggest that P. affinis ethanolic extracts possess therapeutic potential for the treatment of pulmonary allergic disorders such as allergic asthma.


Asunto(s)
Antiasmáticos/farmacología , Asma/tratamiento farmacológico , Depuradores de Radicales Libres/farmacología , Extractos Vegetales/farmacología , Rhodophyta/química , Animales , Antiasmáticos/aislamiento & purificación , Asma/inducido químicamente , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Modelos Animales de Enfermedad , Eosinófilos/enzimología , Etanol/química , Femenino , Depuradores de Radicales Libres/aislamiento & purificación , Inmunoglobulina E/sangre , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina , Peroxidasa/metabolismo , Extractos Vegetales/aislamiento & purificación , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA