Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Animal ; 16(3): 100459, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35217413

RESUMEN

Selenium (Se) plays a crucial role in protecting biological materials from oxidative damage through the action of the selenoprotein glutathione peroxidase (GSH-Px), and the effectiveness of this protection is often dependent upon Se supply. Recent evidence has indicated that GSH-Px mRNA expression can be upregulated in response to potential oxidative damage risk, and that this upregulation is independent of Se supply. The current study aimed to determine the effect of Se supplementation, stocking rate and tissue fatty acid profile on GSH-Px activity in breast and thigh tissue of commercial broilers. A total of 168 Ross 308 broiler chicks were enrolled onto the study. Prior to enrolment, birds were brooded as a single group and received a starter diet containing no additional Se. The study was a 2 × 2 factorial design comprising of two levels of dietary Se (high Se, 0.5 mg/kg total Se, low Se background Se only), and two stocking rates (high, 30 kg/m2, and low, 15 kg/m2). At 15 days of age, birds were blocked by live weight and randomly allocated to one of the four treatments, with six pen replicates per treatment. At 42 days of age, one bird was randomly selected from each pen replicate, euthanased and breast and thigh tissue harvested. GSH-Px activity, thiobarbituric acid reactive substances (TBARS), and fatty acid (FA) content of these tissues were determined. There was no effect (P > 0.05) of stocking rate on GSH-Px activity or TBARS. GSH-Px activity did not differ between tissue types but was greater in high Se birds (P < 0.001) compared to low Se. TBARS concentrations were greater in thigh tissue (P < 0.001), and these thigh concentrations were greater in high Se birds (P < 0.05). There were marked differences between breast and thigh tissue in most FAs (P < 0.001), with breast generally containing greater proportions of polyunsaturated FA, so that breast tissue had a higher (P < 0.001) peroxidisability index (PI) than thigh. A positive correlation between GSH-Px activity and PI in the thigh tissue of high Se birds (Pearson Correlation 0.668; P = 0.025) may indicate that increasing susceptibility to peroxidisation in lipid-rich tissues may also upregulate GSH-Px activity in Se-replete birds. This study suggests that ensuring adequate dietary selenium could be a useful tool to mitigate adverse effects on meat quality caused by oxidation, particularly in lipid-rich meat.


Asunto(s)
Selenio , Alimentación Animal/análisis , Animales , Pollos/metabolismo , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Glutatión Peroxidasa/metabolismo , Músculo Esquelético/metabolismo , Aves de Corral , Selenio/metabolismo , Selenio/farmacología
2.
J Dairy Sci ; 102(8): 7000-7010, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31155245

RESUMEN

This study aimed to determine the effects of supplementing pregnant heifers with the organic selenium (Se) source 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) during the last 8 wk of pregnancy on dam and calf Se status. A total of 42 in-calf heifers were recruited to the study and randomly allocated to 1 of 3 treatments; a negative control (Con), sodium selenite (NaSe), or HMSeBA. Animals were blocked by body weight, body condition score, and expected calving date before treatment allocation. Following enrollment, all animals underwent a 7-wk wash-out period, after which they received their respective supplements, top-dressed daily onto a basal diet for the last 8 wk of pregnancy. Heifer blood samples were taken at weekly intervals from enrollment until 2 wk before expected calving date and as soon as possible after calving for determination of whole-blood glutathione peroxidase activity (GSH-Px) and plasma Se and malondialdehyde (MDA) concentrations. Selenized AA were determined in plasma samples taken at 3 wk precalving. A colostrum sample was taken as close to parturition as possible for determination of colostrum total Se, selenized AA, and IgG concentration. Calves were blood sampled as close to birth as possible for determination of whole-blood GSH-Px activity and plasma Se and MDA concentrations. Differences in whole-blood GSH-Px activity did not become apparent until calving; GSH-Px activity was lowest in Con heifers but similar between NaSe and HMSeBA heifers. Plasma Se was lowest in unsupplemented heifers and greatest in those supplemented with HMSeBA; this was attributable to greater selenomethionine concentrations in the plasma of HMSeBA heifers. Colostrum Se was lowest in Con heifers and greatest in HMSeBA heifers. The greater Se concentration of HMSeBA heifers was attributable to a greater proportion of total Se comprising selenocysteine; the reason for this is not known. There was no effect of supplementation on colostrum IgG concentration. Plasma Se was lowest in calves born to Con heifers and greatest in those born to HMSeBA heifers. There were no effects of treatment on calf whole-blood GSH-Px activity or plasma MDA concentration. The enhanced Se status associated with HMSeBA supplementation is likely a consequence of selenomethionine supply and may confer benefits to both the dam and her calf postpartum.


Asunto(s)
Bovinos/fisiología , Calostro/química , Suplementos Dietéticos/análisis , Selenio/sangre , Selenometionina/farmacología , Selenito de Sodio/farmacología , Animales , Animales Recién Nacidos , Industria Lechera , Dieta/veterinaria , Femenino , Malondialdehído/sangre , Periodo Posparto/efectos de los fármacos , Embarazo , Distribución Aleatoria
3.
Animal ; 12(12): 2578-2586, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29717686

RESUMEN

The supplementing of sow diets with lipids during pregnancy and lactation has been shown to reduce sow condition loss and improve piglet performance. The aim of this study was to determine the effects of supplemental palm oil (PO) on sow performance, plasma metabolites and hormones, milk profiles and pre-weaning piglet development. A commercial sow ration (C) or an experimental diet supplemented with 10% extra energy in the form of PO, were provided from day 90 of gestation until weaning (24 to 28 days postpartum) in two groups of eight multiparous sows. Gestation length of PO sows increased by 1 day (P<0.05). Maternal BW changes were similar throughout the trial, but loss of backfat during lactation was reduced in PO animals (C: -3.6±0.8 mm; PO: -0.1±0.8 mm; P<0.01). Milk fat was increased by PO supplementation (C day 3: 8.0±0.3% fat; PO day 3: 9.1±0.3% fat; C day 7: 7.8±0.5% fat; PO day 7: 9.9±0.5% fat; P<0.05) and hence milk energy yield of PO sows was also elevated (P<0.05). The proportion of saturated fatty acids was greater in colostrum from PO sows (C: 29.19±0.31 g/100 g of fat; PO: 30.77±0.36 g/100 g of fat; P<0.01). Blood samples taken on 105 days of gestation, within 24 h of farrowing, day 7 of lactation and at weaning (28±3 days post-farrowing) showed there were no differences in plasma concentrations of triacylglycerol, non-esterified fatty acids, insulin or IGF-1 throughout the trial. However, circulating plasma concentrations of both glucose and leptin were elevated during lactation in PO sows (P<0.05 and P<0.005, respectively) and thyroxine was greater at weaning in PO sows (P<0.05). Piglet weight and body composition were similar at birth, as were piglet growth rates throughout the pre-weaning period. A period of 7 days after birth, C piglets contained more body fat, as indicated by their lower fat-free mass per kg (C: 66.4±0.8 arbitrary units/kg; PO: 69.7±0.8 arbitrary unit/kg; P<0.01), but by day 14 of life this situation was reversed (C: 65.8±0.6 arbitrary units/kg; PO: 63.6±0.6 arbitrary units/kg; P<0.05). Following weaning, PO sows exhibited an increased ratio of male to female offspring at their subsequent farrowing (C: 1.0±0.3; PO: 2.2±0.2; P<0.05). We conclude that supplementation of sow diets with PO during late gestation and lactation appears to increase sow milk fat content and hence energy supply to piglets. Furthermore, elevated glucose concentrations in the sow during lactation may be suggestive of impaired glucose homoeostasis.


Asunto(s)
Calostro/química , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Leche/metabolismo , Aceite de Palma/farmacología , Porcinos/fisiología , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Dieta/veterinaria , Femenino , Lactancia/efectos de los fármacos , Embarazo , Destete
4.
Animal ; 7(4): 562-70, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23200142

RESUMEN

The objective of this study was to determine the concentration of total selenium (Se) and the proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the postmortem tissues of female pheasants (Phasianus Colchicus Torquator) offered diets that contained graded additions of selenised-enriched yeast (SY) or a single comparative dose of sodium selenite (SS). Thiobarbituric acid reactive substances (TBARS) and tissue glutathione peroxidase (GSH-Px) activity of breast (Pectoralis Major) were assessed at 0 and 5 days postmortem. A total of 216 female pheasant chicks were enrolled into the study. Twenty-four birds were euthanased at the start of the study, and samples of blood, breast muscle, leg muscle (M. Peroneus Longus and M. Gastrocnemius), heart, liver, kidney and gizzard were collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments (n = 48 birds/treatment) that either differed in Se source (SY v. SS) or dose (control (0.17 mg total Se/kg), SY-L and SS-L (0.3 mg/kg total Se as SY and SS, respectively) and SY-H (0.45 mg total Se/kg)). Following 42 and 91 days of treatment, 24 birds per treatment were euthanased, and samples of blood, breast muscle, leg muscle, heart, liver, kidney and gizzard were retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and TBARS were determined in breast tissue at the end of the study. There were increases in both blood and tissues to the graded addition of SY to the diet (P < 0.001), but the same responses were not apparent with the blood and tissues of selenite-supplemented birds receiving a comparable dose (SY-L v. SS-L). Although there were differences between tissue types in the distribution of SeMet and SeCys, there were few differences between treatments. There were effects of treatment on erythrocyte GSH-Px activity (P = 0.012) with values being higher in treatments SY-H and SS-L when compared with the negative control and treatment SY-L. There were no effects of treatment on tissue GSH-Px activity, which is reflected in the overall lack of any treatment effects on TBARS.


Asunto(s)
Suplementos Dietéticos/análisis , Galliformes/metabolismo , Glutatión Peroxidasa/metabolismo , Selenio/metabolismo , Crianza de Animales Domésticos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Galliformes/crecimiento & desarrollo , Glutatión Peroxidasa/sangre , Músculos Pectorales/metabolismo , Distribución Aleatoria , Selenio/sangre , Selenocisteína/sangre , Selenocisteína/metabolismo , Selenometionina/sangre , Selenometionina/metabolismo , Selenito de Sodio/sangre , Selenito de Sodio/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Levadura Seca/metabolismo
5.
Animal ; 5(11): 1751-60, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22440415

RESUMEN

The objective of this study was to determine the concentration of total selenium (Se) and proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the tissues of female turkeys offered diets containing graded additions of selenized-enriched yeast (SY), or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of breast and thigh muscle were assessed at 0 and 10 days post mortem. A total of 216 female turkey poults were enrolled in the study. A total of 24 birds were euthanized at the start of the study and samples of blood, breast, thigh, heart, liver, kidney and gizzard were collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments (n = 48 birds/treatment) that differed either in Se source (SY v. SS) or dose (Con [0.2 mg/kg total Se], SY-L and SS-L [0.3 mg/kg total Se as SY and SS, respectively] and SY-H [0.45 mg total Se/kg]). Following 42 and 84 days of treatment 24 birds per treatment were euthanized and samples of blood, breast, thigh, heart, liver, kidney and gizzard were retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and thiobarbituric acid reactive substances were determined in breast and thigh tissue at the end of the study. There were responses (P < 0.001) in all tissues to the graded addition of dietary Se, although rates of accumulation were highest in birds offered SY. There were notable differences between tissue types and treatments in the distribution of SeMet and SeCys, and the activity of tissue and erythrocyte GSH-Px (P < 0.05). SeCys was the predominant form of Se in visceral tissue and SeMet the predominant form in breast tissue. SeCys contents were greater in thigh when compared with breast tissue. Muscle tissue GSH-Px activities mirrored SeCys contents. Despite treatment differences in tissue GSH-Px activity, there were no effects of treatment on any meat quality parameter.

6.
J Anim Sci ; 86(11): 3100-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18567732

RESUMEN

The objective was to determine the concentration of total Se and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in postmortem tissues of beef cattle offered diets containing graded additions of selenized enriched yeast (SY; Saccharomyces cerevisiae CNCM I-3060) or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of edible muscle tissue were assessed 10 d postmortem. Thirty-two beef cattle were offered, for a period of 112 d, a total mixed ration that had been supplemented with SY (0, 0.15, or 0.35 mg of Se/kg of DM) or SS (0.15 mg of Se/kg of DM). At enrollment (0 d) and at 28, 56, 84, and 112 d following enrollment, blood samples were taken for Se and Se species determination, as well as whole blood GSH-Px activity. At the end of the study beef cattle were killed and samples of heart, liver, kidney, and skeletal muscle (LM and psoas major) were retained for Se and Se species determination. Tissue GSH-Px activity and thiobarbituric acid reactive substances were determined in skeletal muscle tissue (LM only). The incorporation into the diet of ascending concentrations of Se as SY increased whole blood total Se and the proportion of total Se comprised as SeMet, as well as GSH-Px activity. There was also a dose-dependent response to the graded addition of SY on total Se and proportion of total Se as SeMet in all tissues and GSH-Px activity in skeletal muscle tissue. Furthermore, total Se concentration of whole blood and tissues was greater in those animals offered SY when compared with those receiving a comparable dose of SS, indicating an improvement in Se availability and tissue Se retention. Likewise, GSH-Px activity in whole blood and LM was greater in those animals offered SY when compared with those receiving a comparable dose of SS. However, these increases in tissue total Se and GSH-Px activity appeared to have little or no effect in meat oxidative stability.


Asunto(s)
Bovinos/metabolismo , Suplementos Dietéticos , Carne/normas , Selenio/metabolismo , Selenito de Sodio/metabolismo , Aminoácidos/metabolismo , Alimentación Animal/análisis , Animales , Glutatión Peroxidasa/sangre , Glutatión Peroxidasa/metabolismo , Masculino , Distribución Aleatoria , Saccharomyces cerevisiae/química , Selenio/sangre , Selenocisteína/metabolismo , Selenometionina/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factores de Tiempo , Distribución Tisular
7.
Animal ; 2(11): 1610-8, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22444012

RESUMEN

Forty multiparous Holstein cows were used in a 16-week continuous design study to determine the effects of either selenium (Se) source, selenised yeast (SY) (derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060) or sodium selenite (SS), or Se inclusion rate in the form of SY in the diets of lactating dairy cows on the Se concentration and speciation in blood, milk and cheese. Cows received ad libitum a total mixed ration (TMR) with a 1 : 1 forage : concentrate ratio on a dry matter (DM) basis. There were four diets (T1 to T4), which differed only in either source or dose of Se additive. Estimated total dietary Se for T1 (no supplement), T2 (SS), T3 (SY) and T4 (SY) was 0.16, 0.30, 0.30 and 0.45 mg/kg DM, respectively. Blood and milk samples were taken at 28-day intervals and at each time point there were positive linear effects of Se in the form of SY on the Se concentration in blood and milk. At day 112, blood and milk Se values for T1 to T4 were 177, 208, 248 and 279 ± 6.6 and 24, 38, 57 and 72 ± 3.7 ng/g fresh material, respectively, and indicate improved uptake and incorporation of Se from SY. In whole blood, selenocysteine (SeCys) was the main selenised amino acid and the concentration of selenomethionine (SeMet) increased with the increasing inclusion rate of SY. In milk, there were no marked treatment effects on the SeCys content, but Se source had a marked effect on the concentration of SeMet. At day 112, replacing SS (T2) with SY (T3) increased the SeMet concentration of milk from 36 to 111 ng Se/g and its concentration increased further to 157 ng Se/g dried sample as the inclusion rate of SY increased further (T4) to provide 0.45 mg Se/kg TMR. Neither Se source nor inclusion rate affected the keeping quality of milk. At day 112, milk from T1, T2 and T3 was made into a hard cheese and Se source had a marked effect on total Se and the concentration of total Se comprised as either SeMet or SeCys. Replacing SS (T2) with SY (T3) increased total Se, SeMet and SeCys content in cheese from 180 to 340 ng Se/g, 57 to 153 ng Se/g and 52 to 92 ng Se/g dried sample, respectively. The use of SY to produce food products with enhanced Se content as a means of meeting the Se requirements is discussed.

8.
Animal ; 2(3): 375-80, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22445039

RESUMEN

The objective was to determine the concentration of total selenium (Se) and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in post mortem tissues of lambs in the 6 weeks period following the withdrawal of a diet containing high-dose selenised yeast (HSY), derived from a specific strain of Saccharomyces cerevisae CNCM (Collection Nationale de Culture de Micro-organism) I-3060. Thirty Texel × Suffolk lambs used in this study had previously received diets (91 days) containing either HSY (6.30 mg Se per kg dry matter (DM)) or an unsupplemented control (C; 0.13 mg Se per kg DM). Following the period of supplementation, all lambs were then offered a complete pelleted diet, without additional Se (0.15 mg Se per kg DM), for 42 days. At enrolment and 21 and 42 days later, five lambs from each treatment were blood sampled, euthanased and samples of heart, liver, kidney and skeletal muscle (longissimus dorsi and psoas major) tissue were retained. Total Se concentration in whole blood and tissues was significantly (P < 0.001) higher in HSY lambs at all time points that had previously received long-term exposure to high dietary concentrations of SY. The distribution of total Se and the proportions of total Se comprised as SeMet and SeCys differed between tissues, treatment and time points. Total Se was greatest in HSY liver and kidney (22.64 and 18.96 mg Se per kg DM, respectively) and SeCys comprised the greatest proportion of total Se. Conversely, cardiac and skeletal muscle (longissimus dorsi and psoas major) tissues had lower total Se concentration (10.80, 7.02 and 7.82 mg Se per kg DM, respectively) and SeMet was the predominant selenised amino acid. Rates of Se clearance in HSY liver (307 µg Se per day) and kidney (238 µg Se per day) were higher compared with HSY cardiac tissue (120 µg Se per day) and skeletal muscle (20 µg Se per day). In conclusion, differences in Se clearance rates were different between tissue types, reflecting the relative metabolic activity of each tissue, and appear to be dependent on the proportions of total Se comprised as either SeMet or SeCys.

9.
J Anim Sci ; 86(1): 197-204, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17878272

RESUMEN

The objective of the study was to determine if there were adverse effects on animal health and performance when a range of ruminant animal species were fed at least 10 times the maximum permitted European Union (EU) Se dietary inclusion rate (0.568 mg of Se/kg of DM) in the form of Se-enriched yeast (SY) derived from a specific strain of Saccharomyces cerevisiae, CNCM I-3060. In a series of studies, dairy cows, beef cattle, calves, and lambs were offered a control diet that contained no Se supplement or a treatment diet that contained the same basal feed ingredients plus a SY supplement that increased total dietary Se from 0.15 to 6.25, 0.20 to 6.74, 0.15 to 5.86, and 0.14 to 6.63 mg of Se/kg of DM, respectively. The inclusion of the SY supplement increased (P < 0.001) whole-blood Se concentrations, reaching maximum mean values of 716, 1,505, 1,377, and 724 ng of Se/mL for dairy cattle, beef cattle, calves, and lambs, respectively. Seleno-methionine accounted for 10% of total whole-blood Se in control animals, whereas the proportion in SY animals ranged between 40 and 75%. Glutathione peroxidase (EC 1.11.1.9) activity was greater (P < 0.05) in SY animals compared with controls. A range of other biochemical and hematological parameters were assessed, but few differences of biological significance were established between treatment groups. There were no differences between treatment groups within each species with regard to animal physical performance or overall animal health. It was concluded that there were no adverse effects on animal health, performance, and voluntary feed intake with the administration of at least 10 times the EU maximum, or approximately 20 times the US Food and Drug Administration permitted concentration of dietary Se in the form of SY derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060.


Asunto(s)
Alimentación Animal/efectos adversos , Bovinos/crecimiento & desarrollo , Bovinos/metabolismo , Saccharomyces cerevisiae/metabolismo , Selenio/efectos adversos , Ovinos/crecimiento & desarrollo , Ovinos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bovinos/sangre , Dieta/veterinaria , Relación Dosis-Respuesta a Droga , Lactancia/efectos de los fármacos , Saccharomyces cerevisiae/química , Selenio/sangre , Selenio/química , Ovinos/sangre , Aumento de Peso/efectos de los fármacos
10.
J Dairy Sci ; 89(9): 3544-51, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16899690

RESUMEN

The objectives were to determine effects of graded levels of selenized yeast derived from a specific strain of Saccharomyces cerevisiae (CNCM I-3060) on animal performance and in selenium concentrations in the blood, milk, feces, and urine of dairy cows compared with sodium selenite; and to provide preliminary data on the proportion of selenium as selenomethionine in the milk and blood. Twenty Holstein cows were used in a 5 x 5 Latin square design study in which all cows received the same total mixed rations, which varied only in source or concentration of dietary selenium. There were 5 experimental treatments. Total dietary selenium of treatment 1, which received no added selenium, was 0.15 mg/kg of dry matter, whereas values for treatments 2, 3, and 4, derived from selenized yeast, were 0.27, 0.33, and 0.40 mg/kg of dry matter, respectively. Treatment 5 contained 0.25 mg of selenium obtained from sodium selenite/kg of dry matter. There were no significant treatment effects on animal performance, and blood chemistry and hematology showed few treatment effects. Regression analysis noted significant positive linear effects of increasing dietary selenium derived from selenized yeast on selenium concentrations in the milk, blood, urine, and feces. In addition, milk selenium results indicated improved bioavailability of selenium from selenized yeast, compared with sodium selenite. Preliminary analyses showed that compared with sodium selenite, the use of selenized yeast increased the concentration of selenomethionine in the milk and blood. There was no indication of adverse effects on cow health associated with the use of selenized yeast.


Asunto(s)
Bovinos/metabolismo , Suplementos Dietéticos , Lactancia/fisiología , Saccharomyces cerevisiae , Selenio/administración & dosificación , Alimentación Animal/análisis , Animales , Análisis Químico de la Sangre/veterinaria , Industria Lechera/métodos , Ingestión de Alimentos/efectos de los fármacos , Heces/química , Femenino , Lactancia/efectos de los fármacos , Leche/química , Saccharomyces cerevisiae/química , Selenio/análisis , Selenio/farmacocinética , Selenometionina/análisis , Selenometionina/farmacocinética , Selenito de Sodio/administración & dosificación , Selenito de Sodio/farmacocinética , Selenito de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA