Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 191: 106769, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37061145

RESUMEN

Drug resistance in cancer has been classified as innate resistance or acquired resistance, which were characterized by apoptotic defects and ABC transporters overexpression respectively. Therefore, to preclude or reverse these resistance mechanisms could be a promising strategy to improve chemotherapeutic outcomes. In this study, a natural product from Osage Orange, pomiferin, was identified as a novel autophagy activator that circumvents innate resistance by triggering autophagic cell death via SERCA inhibition and activation of the CaMKKß-AMPK-mTOR signaling cascade. In addition, pomiferin also directly inhibited the P-gp (MDR1/ABCB1) efflux and reversed acquired resistance by potentiating the accumulation and efficacy of the chemotherapeutic agent, cisplatin. In vivo study demonstrated that pomiferin triggered calcium-mediated tumor suppression and exhibited an anti-metastatic effect in the LLC-1 lung cancer-bearing mouse model. Moreover, as an adjuvant, pomiferin potentiated the anti-tumor effect of the chemotherapeutic agent, cisplatin, in RM-1 drug-resistant prostate cancer-bearing mouse model by specially attenuating ABCB1-mediated drug efflux, but not ABCC5, thereby promoting the accumulation of cisplatin in tumors. Collectively, pomiferin may serve as a novel effective agent for circumventing drug resistance in clinical applications.


Asunto(s)
Antineoplásicos , Muerte Celular Autofágica , Neoplasias Pulmonares , Masculino , Ratones , Animales , Cisplatino/farmacología , Cisplatino/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Neoplasias Pulmonares/tratamiento farmacológico , Apoptosis , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral
2.
Comput Biol Med ; 157: 106781, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931205

RESUMEN

RNA-sequencing has been proposed as a valuable technique to develop individualized therapy concepts for cancer patients based on their tumor-specific mutational profiles. Here, we aimed to identify drugs and inhibitors in an individualized therapy-based drug repurposing approach focusing on missense mutations for 35 biopsies of cancer patients. The missense mutations belonged to 9 categories (ABC transporter, apoptosis, angiogenesis, cell cycle, DNA damage, kinase, protease, transcription factor, tumor suppressor). The highest percentages of missense mutations were observed in transcription factor genes. The mutational profiles of all 35 tumors were subjected to hierarchical heatmap clustering. All 7 leukemia biopsies clustered together and were separated from solid tumors. Based on these individual mutation profiles, two strategies for the identification of possible drug candidates were applied: Firstly, virtual screening of FDA-approved drugs based on the protein structures carrying particular missense mutations. Secondly, we mined the Drug Gene Interaction (DGI) database (https://www.dgidb.org/) to identify approved or experimental inhibitors for missense mutated proteins in our dataset of 35 tumors. In conclusion, our approach based on virtual drug screening of FDA-approved drugs and DGI-based inhibitor selection may provide new, individual treatment options for patients with otherwise refractory tumors that do not respond anymore to standard chemotherapy.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Detección Precoz del Cáncer , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Factores de Transcripción/genética
3.
Eur J Med Chem ; 224: 113676, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34256125

RESUMEN

A series of eleven celastrol derivatives was designed, synthesized, and evaluated for their in vitro cytotoxic activities against six human cancer cell lines (A549, HepG2, HepAD38, PC3, DLD-1 Bax-Bak WT and DKO) and three human normal cells (LO2, BEAS-2B, CCD19Lu). To our knowledge, six derivatives were the first example of dipeptide celastrol derivatives. Among them, compound 3 was the most promising derivative, as it exhibited a remarkable anti-proliferative activity and improved selectivity in liver cancer HepAD38 versus human normal hepatocytes, LO2. Compound 6 showed higher selectivity in liver cancer cells against human normal lung fibroblasts, CCD19Lu cell line. The Ca2+ mobilizations of 3 and 6 were also evaluated in the presence and absence of thapsigargin to demonstrate their inhibitory effects on SERCA. Derivatives 3 and 6 were found to induce apoptosis on LO2, HepG2 and HepAD38 cells. The potential docking poses of all synthesized celastrol dipeptides and other known inhibitors were proposed by molecular docking. Finally, 3 inhibited P-gp-mediated drug efflux with greater efficiency than inhibitor verapamil in A549 lung cancer cells. Therefore, celastrol-dipeptide derivatives are potent drug candidates for the treatment of drug-resistant cancer.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Antineoplásicos/síntesis química , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Triterpenos Pentacíclicos/metabolismo , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Relación Estructura-Actividad
4.
Phytomedicine ; 86: 153196, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32229058

RESUMEN

BACKGROUND: A major problem of cancer treatment is the development of multidrug resistance (MDR) to chemotherapy. MDR is caused by different mechanisms such as the expression of the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). These transporters efflux xenobiotic toxins, including chemotherapeutics, and they were found to be overexpressed in different cancer types. PURPOSE: Identification of novel molecules that overcome MDR by targeting ABC-transporters. METHODS: Resazurin reduction assay was used for cytotoxicity test. AutoDock 4.2. was used for molecular docking. The function of P-gp and BCRP was tested using a doxorubicin uptake assay and an ATPase assay. ROS generation was detected using flow cytometry for the measurement of H2DCFH-DA fluorescence. Annexin/PI staining was applied for the detection of apoptosis. Bioinformatic analyses were performed using LigandScout 3.12. software and DataWarrior software. RESULTS: In our search for new molecules that selectively act against resistant phenotypes, we identified isopetasin and S-isopetasin, which are bioactive natural products from Petasites formosanus. They exerted collateral sensitivity towards leukemia cells with high P-gp expression in CEM/ADR5000 cells, compared to sensitive wild-type CCRF-CEM leukemia cells. Also, they revealed considerable activity towards breast cancer cells overexpressing breast cancer resistance protein, MDA-MB-231-BCRP clone 23. This motivated us to investigate whether the function of P-gp was inhibited. In-silico results showed the compounds bound with high affinity and interacted with key amino acid residues in P-gp . Then, we found that the two compounds increased doxorubicin accumulation in P-gp overexpressing CEM/ADR5000 by three-fold compared to cells without inhibitor. P-gp-mediated drug efflux was ATP-dependent. Isopetasin and S-isopetasin increased the ATPase activity of human P-gp in a comparable fashion as verapamil used as control P-gp inhibitor. As isopetasin and S-isopetasin exerted dual roles, first as cytotoxic compounds and then as P-gp inhibitors, we suggested that their P-gp inhibition is part of a larger complex of mechanisms to induce cell death in cancer patients. P-gp dysfunction induces mitochondrial stress to generate ATP. Upon continuing stress by P-gp inhibition, the mitochondria generate reactive oxygen species (ROS). Initially established for verapamil, this theory was validated in the present study for isopetasin and S-isopetasin, as treatment with the two candidates increased ROS levels in CEM/ADR5000 cells followed by apoptosis. CONCLUSION: Our study highlights the importance of isopetasin and S-isopetasin as novel ROS-generating and apoptosis-inducing P-gp inhibitors.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Sesquiterpenos/farmacología , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/metabolismo
5.
Biotechnol Adv ; 38: 107342, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30708024

RESUMEN

Cancer chemotherapy is frequently hampered by drug resistance. Concepts to combine anticancer drugs with different modes of action to avoid the development of resistance did not provide the expected success in the past, because tumors can be simultaneously non-responsive to many drugs (e.g. the multidrug resistance phenotype). However, tumors may be specifically hypersensitive to other drugs - a phenomenon also termed collateral sensitivity. This seems to be a general biological mechanism, since it also occurs in drug-resistant Escherichia coli and Saccharomyces cerevisiae. Here, we give a timely and comprehensive overview on hypersensitivity in resistant cancer cells towards natural products and their derivatives. Since the majority of clinically established anticancer drugs are natural products or are in one way or another derived from them, it is worth hypothesizing that natural products may deliver promising lead compounds for the development of collateral sensitive anticancer drugs. Hypersensitivity occurs not only in classical ABC transporter-mediated multidrug resistance, but also in many other resistance phenotypes. Resistant cancers can be hypersensitive to natural compounds from diverse classes and origins (i.e. mitotic spindle poisons, DNA topoisomerase 1 and 2 inhibitors, diverse phytochemicals isolated from medicinal plants, (semi)synthetic derivatives of phytochemicals, antibiotics, marine drugs, recombinant therapeutic proteins and others). Molecular mechanisms of collateral sensitivity include (1) increased ATP hydrolysis and reactive oxygen species production by futile cycling during ABC transporter-mediated drug efflux, (2) inhibition of ATP production, and (3) alterations of drug target proteins (e.g. increased expression of topoisomerases and heat shock proteins, inhibition of Wnt/ß-catenin pathway, mutations in ß-tubulin). The phenomenon of hypersensitivity needs to be exploited for clinical oncology by the development of (1) novel combination protocols that include collateral sensitive drugs and (2) novel drugs that specifically exhibit high degrees of hypersensitivity in resistant tumors.


Asunto(s)
Neoplasias , Antineoplásicos , Productos Biológicos , Sensibilidad Colateral al uso de Fármacos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos
6.
J Nat Med ; 73(1): 226-235, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30066239

RESUMEN

Overexpression of efflux transporters of the ATP-binding cassette (ABC) transporter family, primarily P-glycoprotein (P-gp), is a frequent cause of multidrug resistance in cancer and leads to failure of current chemotherapies. Thus, identification of selective P-gp inhibitors might provide a basis for the development of novel anticancer drug candidates. The natural product goniothalamin and 21 derivatives were characterized regarding their ability to inhibit ABC transporter function. Among the goniothalamins, selective inhibitors of P-gp were discovered. The two most potent inhibitors (R)-3 and (S)-3 displayed the ability to increase intracellular accumulation of doxorubicin, thereby sensitizing P-gp-overexpressing tumor cells to chemotherapy by decreasing doxorubicin IC50 value up to 15-fold. Molecular docking studies indicated these compounds to inhibit P-gp by acting as transporter substrates. In conclusion, our findings revealed a novel role of goniothalamin derivatives in reversing P-gp-mediated chemotherapy resistance.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Quimioterapia/métodos , Neoplasias/tratamiento farmacológico , Pironas/uso terapéutico , Antineoplásicos/farmacología , Humanos , Pironas/farmacología
7.
Phytomedicine ; 53: 319-331, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30190231

RESUMEN

BACKGROUND: Practices of biopiracy to use genetic resources and indigenous knowledge by Western companies without benefit-sharing of those, who generated the traditional knowledge, can be understood as form of neocolonialism. HYPOTHESIS: The One-World Medicine concept attempts to merge the best of traditional medicine from developing countries and conventional Western medicine for the sake of patients around the globe. STUDY DESIGN: Based on literature searches in several databases, a concept paper has been written. Legislative initiatives of the United Nations culminated in the Nagoya protocol aim to protect traditional knowledge and regulate benefit-sharing with indigenous communities. The European community adopted the Nagoya protocol, and the corresponding regulations will be implemented into national legislation among the member states. Despite pleasing progress, infrastructural problems of the health care systems in developing countries still remain. Current approaches to secure primary health care offer only fragmentary solutions at best. Conventional medicine from industrialized countries cannot be afforded by the impoverished population in the Third World. Confronted with exploding costs, even health systems in Western countries are endangered to burst. Complementary and alternative medicine (CAM) is popular among the general public in industrialized countries, although the efficacy is not sufficiently proven according to the standards of evidence-based medicine. CAM is often available without prescription as over-the-counter products with non-calculated risks concerning erroneous self-medication and safety/toxicity issues. The concept of integrative medicine attempts to combine holistic CAM approaches with evidence-based principles of conventional medicine. CONCLUSION: To realize the concept of One-World Medicine, a number of standards have to be set to assure safety, efficacy and applicability of traditional medicine, e.g. sustainable production and quality control of herbal products, performance of placebo-controlled, double-blind, randomized clinical trials, phytovigilance, as well as education of health professionals and patients.


Asunto(s)
Cooperación Internacional , Medicina Tradicional , Plantas Medicinales , Robo , Biodiversidad , Colonialismo , Terapias Complementarias , Países en Desarrollo , Método Doble Ciego , Unión Europea , Medicina Basada en la Evidencia , Humanos , Medicina Tradicional/normas , Naturopatía , Patentes como Asunto , Control de Calidad , Automedicación
8.
Phytomedicine ; 51: 112-119, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30466608

RESUMEN

BACKGROUND: Epimagnolin A is an ingredient of the Chinese crude drug Shin-i, derived from the dried flower buds of Magnolia fargesii and Magnolia flos, which has been traditionally used for the treatment of allergic rhinitis and nasal congestion, empyema, and sinusitis. The pharmacokinetic activity of epimagnolin A remains to be evaluated. PURPOSE: In this study, we examined the possible interactions of epimagnolin A with human ATP-binding cassette (ABC) transporter ABCB1, a membrane protein vital in regulating the pharmacokinetics of drugs and xenobiotics. STUDY DESIGN/METHODS: The interaction of epimagnolin A with ABCB1 was evaluated in calcein, ATPase, and MTT assays by using Flp-In-293/ABCB1 cells and purified ABCB1 and simulated in molecular docking studies. RESULTS: Epimagnolin A inhibited calcein export by Flp-In-293/ABCB1 cells in a concentration-dependent manner in a calcein assay. ATPase assay revealed a concentration-dependent stimulation of the ATPase activity of ABCB1 by epimagnolin A. Epimagnolin A also showed saturation kinetics in the relationship between the compound-stimulated ATPase activity and the compound concentration, suggesting Michaelis-Menten kinetics similar to those of the control drug, verapamil. Km and Vmax values were calculated from Hanes-Woolf plots of (compound concentration) × (compound-stimulated ATPase activity)-1 vs. (compound concentration); the Km of epimagnolin and verapamil was 42.9 ±â€¯7.53  µM and 12.3 ±â€¯4.79  µM, respectively, and the corresponding Vmax values were 156 ±â€¯15.0  µM and 109 ±â€¯3.18  µM. Molecular docking studies on human ABCB1 showed that epimagnolin A docked to the same binding pocket as verapamil, and 3-(4,5-dimethyl-2-thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays showed that the sensitivities of Flp-In-293/ABCB1 cells against anti-cancer drugs were enhanced upon exposure to 10  µM epimagnolin A. CONCLUSION: These results strongly suggest that epimagnolin A affects the transport activity of ABCB1 as a substrate.


Asunto(s)
Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Lignanos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Humanos , Magnolia/química , Simulación del Acoplamiento Molecular , Verapamilo/farmacología
9.
Sci Rep ; 7(1): 11551, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28912423

RESUMEN

Posttraumatic stress disorder (PTSD) gains a lot of attention due to high prevalence and strong psychological upset, but the etiology remains undefined and effective treatment is quite limited. Growing studies demonstrated the involvement of oxidative stress in various psychiatry diseases, suggesting anti-oxidation therapy might be a strategy for PTSD treatment. Free and Easy Wanderer (FAEW) is a poly-herbal drug clinically used in China for hundreds of years in the treatment of psychiatric disorder. We hypothesized that FAEW exerts clinical effects through the activity against oxidative stress with fluoxetine as antidepressant control drug. Our results revealed that FAEW significantly reduced both endogenous and H2O2-induced exogenous ROS levels in the human glioblastoma T98G and neuroblastoma SH-SY5Y cell lines. Transcriptome-wide microarray analysis indicated NRF2/HO-1 as the common target of FAEW and fluoxetine. Western blotting assay proved that the two drugs promoted NRF2 release from KEAP1 in the cytoplasm and translocation to the nuclei in a KEAP1-dependent manner, the expression of the protein HO-1 increased accordingly, suggesting the participation of KEAP1-NRF2/HO-1 pathway. The chemical constituents of FAEW (i.e. paeoniflorin, baicalin) bound to KEAP1 in silico, which hence might be the effective substances of FAEW. In conclusion, FAEW counteracted H2O2-induced oxidative stress through KEAP1-NRF2/HO-1 pathway.


Asunto(s)
Antioxidantes/farmacología , Hemo-Oxigenasa 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Línea Celular , Perfilación de la Expresión Génica , Humanos , Análisis por Micromatrices , Neuronas/efectos de los fármacos , Plantas Medicinales
10.
J Ethnopharmacol ; 203: 110-119, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28363522

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Multidrug resistance (MDR) of cancer is often associated with the overexpression of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), multidrug resistance-associated protein-1 (MRP-1) and breast cancer resistance protein (BCRP or ABCG2), in cancer cells, which facilitates the active efflux of a wide variety of chemotherapeutic drugs out of the cells. Marsdenia tenacissima is a traditional Chinese medicinal herb that has long been clinically used for treatment of cancers, particularly in combinational use with anticancer drugs. Polyoxypregnanes (POPs) are identified as main constituents of this herb, and three of them have been reported to exhibit P-gp modulatory effect and thus reverse MDR. Therefore, it is of great necessity to investigate more POPs that have potential to reverse transporters-mediated MDR. AIM OF THE STUDY: We aimed to identify POPs as the chemical basis responsible for circumventing ABC transporters-mediated MDR by M. tenacissima. MATERIALS AND METHODS: The MDR reversal effects of M. tenacissima crude extract together with a series of isolated POPs were evaluated on several MDR cancer cell lines that overexpress P-gp, MRP1 or ABCG2. The activities of P-gp, MRP1 and ABCG2 were determined by the flow cytometry-based substrate efflux assay. Molecular docking of POPs to a three-dimensional human P-gp homology structure was also performed. RESULTS: The crude extract of M. tenacissima was firstly found to circumvent P-gp-mediated MDR. Then, 11 polyoxypregnane compounds (POPs) isolated from this herb were found to overcome P-gp-, MRP1- and/or ABCG2-mediated MDR. Further mechanistic study delineated that the reversal of MDR by these POPs was due to significant increase in the intracellular concentrations of the substrate anticancer drugs via their inhibition of different ABC transporter-mediated efflux activities. Furthermore, molecular docking revealed that POPs with P-gp modulatory effect bound to P-gp and fitted well into the cavity between the alpha and beta subunit of P-gp via forming hydrogen bonds. In addition, several key structural determinants for inhibition of P-gp, MRP1 or ABCG2 by POPs were illustrated. CONCLUSIONS: Our findings advocated the rational use of M. tenacissima to enhance efficacies of conventional anticancer drugs in tumors with ABC drug transporters-mediated MDR. Furthermore, 11 POPs were found to contribute to MDR reversal effect of M. tenacissima via inhibition of different ABC efflux transporters.


Asunto(s)
Antineoplásicos/farmacología , Marsdenia/química , Extractos Vegetales/farmacología , Pregnanos/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Humanos , Simulación del Acoplamiento Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Pregnanos/aislamiento & purificación
11.
Front Pharmacol ; 8: 38, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28210221

RESUMEN

Curcuma longa has long been used in China and India as anti-inflammatory agent to treat a wide variety of conditions and also as a spice for varied curry preparations. The chemoprofile of the Curcuma species exhibits the presence of varied phytochemicals with curcumin being present in all three species but AA only being shown in C. longa. This study explored the effect of a curcumin/AA combination on human cancer cell lines. The curcumin/AA combination was assessed by isobologram analysis using the Loewe additivity drug interaction model. The drug combination showed additive cytotoxicity toward CCRF-CEM and CEM/ADR5000 leukemia cell lines and HCT116p53+/+ and HCT116p53-/- colon cancer cell line, while the glioblastoma cell lines U87MG and U87MG.ΔEGFR showed additive to supra-additive cytotoxicity. Gene expression profiles predicting sensitivity and resistance of tumor cells to induction by curcumin and AA were determined by microarray-based mRNA expressions, COMPARE, and hierarchical cluster analyses. Numerous genes involved in transcription (TFAM, TCERG1, RGS13, C11orf31), apoptosis-regulation (CRADD, CDK7, CDK19, CD81, TOM1) signal transduction (NR1D2, HMGN1, ABCA1, DE4ND4B, TRIM27) DNA repair (TOPBP1, RPA2), mRNA metabolism (RBBP4, HNRNPR, SRSF4, NR2F2, PDK1, TGM2), and transporter genes (ABCA1) correlated with cellular responsiveness to curcumin and ascorbic acid. In conclusion, this study shows the effect of the curcumin/AA combination and identifies several candidate genes that may regulate the response of varied cancer cells to curcumin and AA.

12.
Molecules ; 21(4): 496, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27092478

RESUMEN

Drug resistance and the severe side effects of chemotherapy necessitate the development of novel anticancer drugs. Natural products are a valuable source for drug development. Scopoletin is a coumarin compound, which can be found in several Artemisia species and other plant genera. Microarray-based RNA expression profiling of the NCI cell line panel showed that cellular response of scopoletin did not correlate to the expression of ATP-binding cassette (ABC) transporters as classical drug resistance mechanisms (ABCB1, ABCB5, ABCC1, ABCG2). This was also true for the expression of the oncogene EGFR and the mutational status of the tumor suppressor gene, TP53. However, mutations in the RAS oncogenes and the slow proliferative activity in terms of cell doubling times significantly correlated with scopoletin resistance. COMPARE and hierarchical cluster analyses of transcriptome-wide mRNA expression resulted in a set of 40 genes, which all harbored binding motifs in their promoter sequences for the transcription factor, NF-κB, which is known to be associated with drug resistance. RAS mutations, slow proliferative activity, and NF-κB may hamper its effectiveness. By in silico molecular docking studies, we found that scopoletin bound to NF-κB and its regulator IκB. Scopoletin activated NF-κB in a SEAP-driven NF-κB reporter cell line, indicating that NF-κB might be a resistance factor for scopoletin. In conclusion, scopoletin might serve as lead compound for drug development because of its favorable activity against tumor cells with ABC-transporter expression, although NF-κB activation may be considered as resistance factor for this compound. Further investigations are warranted to explore the full therapeutic potential of this natural product.


Asunto(s)
Resistencia a Antineoplásicos/genética , FN-kappa B/biosíntesis , Neoplasias/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Escopoletina/administración & dosificación , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Artemisia/química , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , FN-kappa B/genética , Neoplasias/genética , Farmacogenética , Extractos Vegetales/química , Análisis por Matrices de Proteínas , Escopoletina/química , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/biosíntesis
13.
Phytomedicine ; 23(2): 166-73, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26926178

RESUMEN

BACKGROUND: Biopiracy mainly focuses on the use of biological resources and/or knowledge of indigenous tribes or communities without allowing them to share the revenues generated out of economic exploitation or other non-monetary incentives associated with the resource/knowledge. METHODS: Based on collaborations of scientists from five continents, we have created a communication platform to discuss not only scientific topics, but also more general issues with social relevance. This platform was termed 'PhytCancer -Phytotherapy to Fight Cancer' (www.phyt-cancer.uni-mainz.de). As a starting point, we have chosen the topic "biopiracy", since we feel this is of pragmatic significance for scientists working with medicinal plants. RESULTS: It was argued that the patenting of herbs or natural products by pharmaceutical corporations disregarded the ownership of the knowledge possessed by the indigenous communities on how these substances worked. Despite numerous court decisions in U.S.A. and Europe, several international treaties, (e.g. from United Nations, World Health Organization, World Trade Organization, the African Unity and others), sharing of a rational set of benefits amongst producers (mainly pharmaceutical companies) and indigenous communities is yet a distant reality. In this paper, we present an overview of the legal frameworks, discuss some exemplary cases of biopiracy and bioprospecting as excellent forms of utilization of natural resources. CONCLUSIONS: We suggest certain perspectives, by which we as scientists, may contribute towards prevention of biopiracy and also to foster the fair utilization of natural resources. We discuss ways, in which the interests of indigenous people especially from developing countries can be secured.


Asunto(s)
Productos Biológicos , Bioprospección/ética , Industria Farmacéutica/ética , Etnofarmacología , Propiedad , Plantas Medicinales , Robo , Países en Desarrollo , Cooperación Internacional , Patentes como Asunto
14.
Phytomedicine ; 23(3): 293-306, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26969383

RESUMEN

BACKGROUND: Ziziphus spina-christi (L.) Desf. (Christ's Thorn Jujube) is a wild tree today found in Jordan, Israel, Egypt, and some parts of Africa, which was already in use as a medicinal plant in Ancient Egypt. In ancient Egyptian prescriptions, it was used in remedies against swellings, pain, and heat, and thus should have anti-inflammatory effects. Nowadays, Z. spina-christi, is used in Egypt (by Bedouins, and Nubians), the Arabian Peninsula, Jordan, Iraq, and Morocco against a wide range of illnesses, most of them associated with inflammation. Pharmacological research undertaken to date suggests that it possesses anti-inflammatory, hypoglycemic, hypotensive and anti-microbial effects. The transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is critical in inflammation, proliferation and involved in various types of cancer. Identification of new anti-inflammatory compounds might be an effective strategy to target inflammatory disorders and cancer. Therefore, extracts from Z. spina-christi are investigated in terms of their anti-inflammatory effects. Our intention is to evaluate the effects of Z. spina-christi described in ancient Egyptian papyri, and to show whether the effects can be proven with modern pharmacological methods. Furthermore, we determine the active ingredients in crude extracts for their inhibitory activity toward NF-κB pathway. MATERIALS AND METHODS: To determine the active ingredients of Z. spina-christi, we fractionated the extracts for bioassays and identified the active compounds. Epigallocatechin, gallocatechin, spinosin, 6''' feruloylspinosin and 6''' sinapoylspinosin and crude extracts of seed, leaf, root or stem were analyzed for their effect on NF-κB DNA binding by electromobility shift assay (EMSA) and nuclear translocation of NF-κB-p65 by Western blot analysis. The binding mode of the compounds to NF-κB pathway proteins was compared with the known inhibitor, MG-132, by in silico molecular docking calculations. Log10IC50 values of gallocatechin and epigallocatechin as two main compounds of the plant were correlated to the microarray-based mRNA expression of 79 inflammation-related genes in cell lines of the National Cancer Institute (NCI, USA) as determined. The expression of 17 genes significantly correlated to the log10IC50 values for gallocatechin or epigallocatechin. RESULTS: Nuclear p65 protein level decreased upon treatment with each extract and compound. Root and seed extracts inhibited NF-κB-DNA binding as shown by EMSA. The compounds showed comparable binding energies and similar docking poses as MG-132 on the target proteins. CONCLUSION: Z. spina-christi might possess anti-inflammatory activity as assumed by ancient Egyptian prescriptions. Five compounds contributed to this bioactivity, i.e. epigallocatechin, gallocatechin, spinosin, 6''' feruloylspinosin and 6''' sinapoylspinosin as shown in vitro and in silico.


Asunto(s)
Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Ziziphus/química , Línea Celular Tumoral , Antiguo Egipto , Medicina de Hierbas/historia , Historia Antigua , Humanos , Inflamación/tratamiento farmacológico , Leupeptinas , Simulación del Acoplamiento Molecular , Raíces de Plantas/química , Tallos de la Planta/química , Semillas/química , Factor de Transcripción ReIA/metabolismo
15.
Phytomedicine ; 22(11): 1045-54, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26407947

RESUMEN

BACKGROUND: Apoptosis and other forms of cell death have been intensively investigated in the past years to explain the mode of action of synthetic anticancer drugs and natural products. Recently, a new form of cell death emerged, which was termed ferroptosis, because it depends on intracellular iron. Here, the role of genes involved in iron metabolism and homeostasis for the cytotoxicity of ten artemisinin derivatives have been systematically investigated. MATERIAL AND METHODS: Log10IC50 values of 10 artemisinin derivatives (artesunate, artemether, arteether, artenimol, artemisitene, arteanuin B, another monomeric artemisinin derivative and three artemisinin dimer molecules) were correlated to the microarray-based mRNA expression of 30 iron-related genes in 60 cell lines of the National Cancer Institute (NCI, USA) as determined in 218 different microarray hybridization experiments. The effect of desferoxamine and ferrostatin-1 on the cytotoxicity of artenimol of CCRF-CEM cells was determined by resazurin assays. The mRNA expression of TFRC was exemplarily validated by immunohistochemical detection of transferrin receptor protein expression. RESULTS: The mRNA expression of 20 genes represented by 59 different cDNA clones significantly correlated to the log10IC50 values for the artemisinins, including genes encoding transferrin (TF), transferrin receptors 1 and 2 (TFRC, TFR2), cerulopasmin (CP), lactoferrin (LTF) and others. The ferroptosis inhibitor ferrostatin-1 and the iron chelator deferoxamine led to a significantly reduced cytotoxicity of artenimol, indicating ferroptosis as cell death mode. CONCLUSION: The numerous iron-related genes, whose expression correlated with the response to artemisinin derivatives speak in factor for the relevance of iron for the cytotoxic activity of these compounds. Treatment with ferroptosis-inducing agents such as artemisinin derivatives represents an attractive strategy for cancer therapy. Pre-therapeutic determination of iron-related genes may indicate tumor sensitivity to artemisinins. Ferroptosis induced by artemisinin-type drugs deserve further investigation for individualized tumor therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Artemisininas/farmacología , Muerte Celular/efectos de los fármacos , Hierro/química , Arteméter , Artesunato , Línea Celular Tumoral/efectos de los fármacos , Ciclohexilaminas/farmacología , Deferoxamina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenilendiaminas/farmacología
16.
Phytomedicine ; 22(4): 462-8, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25925968

RESUMEN

BACKGROUND: The low abundant cajanin stilbene acid (CSA) from Pigeon Pea (Cajanus cajan) has been shown to kill estrogen receptor α positive cancer cells in vitro and in vivo. Downstream effects such as cell cycle and apoptosis-related mechanisms have not been analyzed yet. MATERIAL AND METHODS: We analyzed the activity of CSA by means of flow cytometry (cell cycle distribution, mitochondrial membrane potential, MMP), confocal laser scanning microscopy (MMP), DNA fragmentation assay (apoptosis), Western blotting (Bax and Bcl-2 expression, caspase-3 activation) as well as mRNA microarray hybridization and Ingenuity pathway analysis. RESULTS: CSA induced G2/M arrest and apoptosis in a concentration-dependent manner from 8.88 to 14.79 µM. The MMP broke down, Bax was upregulated, Bcl-2 downregulated and caspase-3 activated. Microarray profiling revealed that CSA affected BRCA-related DNA damage response and cell cycle-regulated chromosomal replication pathways. CONCLUSION: CSA inhibited breast cancer cells by DNA damage and cell cycle-related signaling pathways leading to cell cycle arrest and apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Salicilatos/farmacología , Estilbenos/farmacología , Cajanus/química , Caspasa 3/metabolismo , Daño del ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Proteína X Asociada a bcl-2/metabolismo
17.
Phytomedicine ; 22(1): 120-7, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25636880

RESUMEN

Wortmannin is a cytotoxic compound derived from the endophytic fungi Fusarium oxysporum, Penicillium wortmannii and Penicillium funiculosum that occurs in many plants, including medicinal herbs. The rationale to develop novel anticancer drugs is the frequent development of tumor resistance to the existing antineoplasic agents. Therefore, it is mandatory to analyze resistance mechanisms of novel drug candidates such as wortmannin as well to bring effective drugs into the clinic that have the potential to bypass or overcome resistance to established drugs and to substantially increase life span of cancer patients. In the present project, we found that P-glycoprotein-overexpressing tumor cells displaying the classical multidrug resistance phenotype toward standard anticancer drugs were not cross-resistant to wortmannin. Furthermore, three point-mutated PIK3CA protein structures revealed similar binding energies to wortmannin than wild-type PIK3CA. This protein is the primary target of wortmannin and part of the PI3K/AKT/mTOR signaling pathway. PIK3CA mutations are known to be associated with worse response to therapy and shortened its activity toward wild-type and mutant PIK3CA with similar efficacy.


Asunto(s)
Androstadienos/farmacología , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Farmacogenética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I , Análisis por Conglomerados , Resistencia a Múltiples Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Wortmanina
18.
J Nat Prod ; 78(4): 762-75, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25713926

RESUMEN

Salvia officinalis is used as a dietary supplement with diverse medicinal activity (e.g. antidiabetic and antiatherosclerotic effects). The plant also exerts profound cytotoxicity toward cancer cells. Here, we investigated possible modes of action to explain its activity toward drug-resistant tumor cells. Log10IC50 values of two constituents of S. officinalis (ursolic acid, pomolic acid) were correlated to the expression of ATP-binding cassette (ABC) transporters (P-glycoprotein/ABCB1/MDR1, MRP1/ABCC1, BCRP/ABCG2) and epidermal growth factor receptor (EGFR) or mutations in RAS oncogenes and the tumor suppressor gene TP53 of the NCI panel of cell lines. Gene expression profiles predicting sensitivity and resistance of tumor cells to these compounds were determined by microarray-based mRNA expressions, COMPARE, and hierarchical cluster analyses. Furthermore, the binding of both plant acids to key molecules of the NF-κB pathway (NF-κB, I-κB, NEMO) was analyzed by molecular docking. Neither expression nor mutation of ABC transporters, oncogenes, or tumor suppressor genes correlated with log10IC50 values for ursolic acid or pomolic acid. In microarray analyses, many genes involved in signal transduction processes correlated with cellular responsiveness to these compounds. Molecular docking indicated that the two plant acids strongly bound to target proteins of the NF-κB pathway with even lower free binding energies than the known NF-κB inhibitor MG-132. They interacted more strongly with DNA-bound NF-κB than free NF-κB, pointing to inhibition of DNA binding by these compounds. In conclusion, the lack of cross-resistance to classical drug resistance mechanisms (ABC-transporters, oncogenes, tumor suppressors) may indicate a promising role of the both plant acids for cancer chemotherapy. Genes involved in signal transduction may contribute to the sensitivity or resistance of tumor cells to ursolic and pomolic acids. Ursolic and pomolic acid may target different steps of the NF-κB pathway to inhibit NF-κB-mediated functions.


Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Ácido Oleanólico/análogos & derivados , Plantas Medicinales/química , Salvia officinalis/química , Triterpenos/aislamiento & purificación , Triterpenos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos Fitogénicos/química , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Genes erbB-1 , Humanos , Leupeptinas , Estructura Molecular , FN-kappa B/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/farmacología , Farmacogenética , Plantas Medicinales/genética , Salvia officinalis/genética , Transducción de Señal/efectos de los fármacos , Triterpenos/química , Ácido Ursólico
19.
Target Oncol ; 10(3): 337-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25410594

RESUMEN

Epidermal growth factor receptors (EGFR, HER2, HER3) activate signal transduction pathways involved in cancer proliferation, apoptosis, differentiation, metastasis, and angiogenesis. Their overexpression and activation are associated with unfavorable prognosis of cancer patients. Therefore, they are attractive targets for cancer therapy. Due to the development of drug resistance, therapeutic monoclonal antibodies and synthetic small molecule tyrosine kinase inhibitors directed against EGFR family members may fail with fatal consequences for cancer patients. Medicinal plants raised considerable interest during the past years as valuable resources to develop novel treatment therapies targeting epidermal growth factor receptors and their downstream signal transduction pathways. The present review gives an overview of isolated phytochemicals that inhibit these signaling routes. Inhibitors have been described that down-regulate the mRNA or protein expression of EGFR, HER2, or HER3 or inhibit the phosphorylation of these receptors and/or their downstream signaling kinases. Remarkably, a wealth of in vivo experiments complemented in vitro data, indicating that natural products are also active in living animals bringing this research concept closer to clinical applicability. The combination of receptor-inhibiting natural product with standard anticancer drugs frequently caused increased or even synergistic tumor inhibition in vitro and in vivo. It deserves further evaluation, if and how epidermal growth factor receptor-targeting natural products can be integrated into clinical oncology as well as to define their role for more tumor-specific and individualized tumor therapies.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Neoplasias/genética , Neoplasias/terapia , Fitoterapia/métodos , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Análisis Mutacional de ADN , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Oncología Médica/métodos , Oncología Médica/tendencias , Ratones , Simulación del Acoplamiento Molecular , Fosforilación , Fitoquímicos/química , Plantas Medicinales/química , ARN Mensajero/metabolismo
20.
Phytomedicine ; 21(12): 1525-33, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25442261

RESUMEN

A main problem in oncology is the development of drug-resistance. Some plant-derived lignans are established in cancer therapy, e.g. the semisynthetic epipodophyllotoxins etoposide and teniposide. Their activity is, unfortunately, hampered by the ATP-binding cassette (ABC) efflux transporter, P-glycoprotein. Here, we investigated the bisphenolic honokiol derived from Magnolia officinalis. P-glycoprotein-overexpressing CEM/ADR5000 cells were not cross-resistant to honokiol, but MDA-MB-231 BRCP cells transfected with another ABC-transporter, BCRP, revealed 3-fold resistance. Further drug resistance mechanisms analyzed study was the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR). HCT116 p53(-/-) did not reveal resistance to honokiol, and EGFR-transfected U87.MG EGFR cells were collateral sensitive compared to wild-type cells (degree of resistance: 0.34). To gain insight into possible modes of collateral sensitivity, we performed in silico molecular docking studies of honokiol to EGFR and EGFR-related downstream signal proteins. Honokiol bound with comparable binding energies to EGFR (-7.30 ± 0.01 kcal/mol) as the control drugs erlotinib (-7.50 ± 0.30 kcal/mol) and gefitinib (-8.30 ± 0.10 kcal/mol). Similar binding affinities of AKT, MEK1, MEK2, STAT3 and mTOR were calculated for honokiol (range from -9.0 ± 0.01 to 7.40 ± 0.01 kcal/mol) compared to corresponding control inhibitor compounds for these signal transducers. This indicates that collateral sensitivity of EGFR-transfectant cells towards honokiol may be due to binding to EGFR and downstream signal transducers. COMPARE and hierarchical cluster analyses of microarray-based transcriptomic mRNA expression data of 59 tumor cell lines revealed a specific gene expression profile predicting sensitivity or resistance towards honokiol.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Compuestos de Bifenilo/farmacología , Resistencia a Antineoplásicos , Lignanos/farmacología , Magnolia/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Receptores ErbB/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Farmacogenética , Transducción de Señal/efectos de los fármacos , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA