Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19566, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949910

RESUMEN

Clinacanthus nutans (Burm. f.) Lindau has been extensively utilized in Thai folk medicine. However, there has been no prior exploration of its genetic diversity or its correlation with biological activity and phytochemical profiles. Herein, a total of 10 samples of C. nutans were collected from different geographic locations in different environments of Thailand, encompassing Northern, Northeastern, and Central regions. The genetic diversity study using sequence-related amplified polymorphism (SRAP) markers showed that all C. nutans samples were closely related, as indicated by UPGMA cluster analysis. When comparing the biological activities of C. nutans extracts, our findings demonstrated that those sourced from Northern Thailand exhibited the most potent activity in reducing lipopolysaccharide-inducing cell death, as accessed by cell viability assay. Furthermore, they showed remarkable antioxidant and antibacterial activities against Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. High-performance liquid chromatography (HPLC) analysis of phytochemical profiles revealed consistent chromatography peak patterns across all C. nutans extracts. However, they exhibited varying levels of phenolic contents, as judged by the Folin-Ciocalteu assay, which positively correlated with their observed activities. In conclusion, this study highlights the limited genetic variation within C. nutans population in Thailand. Furthermore, it underscores the association between the biological activity and the total phenolic contents which might be mainly impacted by environmental conditions.


Asunto(s)
Acanthaceae , Antioxidantes , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicina Tradicional , Fitoquímicos/farmacología , Variación Genética , Tailandia , Acanthaceae/química
2.
Molecules ; 28(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298871

RESUMEN

The white mulberry (Morus alba L.) is widely used as a medicinal plant in Asia. In this study, the bioactive compounds of ethanolic extracts of white mulberry leaves from the Sakon Nakhon and Buriram cultivars were evaluated. The ethanolic extracts of mulberry leaves from the Sakon Nakhon cultivar showed the highest total phenolic content of 49.68 mg GAE/g extract and antioxidant activities of 4.38 mg GAE/g extract, 4.53 mg TEAC/g extract, and 92.78 mg FeSO4/g extract using 2,2 diphenyl-1-picrylhydrazyl (DPPH), 2,20-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays, respectively. The resveratrol and oxyresveratrol compounds in mulberry leaves were also investigated by high-performance liquid chromatography (HPLC). The mulberry leaf extracts from the Sakon Nakhon and Buriram cultivars showed oxyresveratrol contents of 1.20 ± 0.04 mg/g extract and 0.39 ± 0.02 mg/g extract, respectively, whereas resveratrol was not detected. It was also found that the potent anti-inflammatory properties of mulberry leaf extracts and its compounds, resveratrol and oxyresveratrol, suppressed the LPS-stimulated inflammatory responses in RAW 264.7 macrophage cells by significantly reducing nitric oxide production in a concentration-dependent manner. These compounds further inhibited interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophage cells. Therefore, it is established that mulberry leaf extract and its bioactive compounds contribute to its anti-inflammatory activity.


Asunto(s)
Antioxidantes , Morus , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/química , Lipopolisacáridos , Tailandia , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células RAW 264.7 , Macrófagos , Resveratrol , Morus/química , Hojas de la Planta
3.
Molecules ; 28(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770665

RESUMEN

Royal jelly is a nutritious substance produced by the hypopharyngeal and mandibular glands of honeybees. Royal jelly possesses many attractive and beneficial properties which make it an ideal component in medical and pharmaceutical products. The antibacterial, antioxidant, and anti-inflammatory activities of royal jelly from honeybees (Apis mellifera) were determined in this study. Moreover, the total phenolic and flavonoid contents of the royal jelly were also evaluated. The effects of royal jelly on growth inhibition against skin pathogenic bacteria, including Cutibacterium acnes, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Corynebacterium spp., were investigated by the agar well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were further determined by the broth dilution method. The results indicated that royal jelly showed antibacterial activity by inhibiting the growth of Gram-positive pathogenic bacteria, while the effectiveness decreased against Gram-negative bacteria. Interestingly, royal jelly from Lamphun (RJ-LP1), and Chiang Mai (RJ-CM1), presented high inhibitory efficacy against C. acnes, MRSA, and S. aureus within 4 h by a time killing assay. Furthermore, the anti-inflammatory properties of royal jelly were tested using RAW264.7 macrophage cells, and results revealed that RJ-LP1 and RJ-CM1 could reduce nitric oxide (NO) production and suppress iNOS gene expression. After testing the antioxidant activity, RJ-CM1 and RJ-CM2 of royal jelly from Chiang Mai had the highest level. Additionally, RJ-CM1 also showed the highest total phenolic and flavonoid content. These findings have brought forward new knowledge of the antibacterial, antioxidant, and anti-inflammatory properties of royal jelly, which will improve clinical and pharmaceutical uses of royal jelly as an alternative therapy for bacterial infections, and also as a dietary supplement product.


Asunto(s)
Antioxidantes , Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Abejas , Ácidos Grasos/farmacología , Ácidos Grasos/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Staphylococcus aureus , Tailandia , Piel , Ratones , Línea Celular
4.
Nutrients ; 14(9)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35565872

RESUMEN

Rice is one of the most important food crops in many countries, with nutritional value and health benefits. In this study, the ethanolic and aqueous extracts of red jasmine rice from Chiang Mai, Thailand were examined for their anthocyanins and phenolic contents. The antioxidant and antiviral activity against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), as well as anticancer activity, were investigated. The total anthocyanins content of 708.03 ± 11.56 mg Cy-3-glc equivalent/g extract, determined from the ethanolic extract, was higher than the aqueous extract. However, the aqueous extract showed the highest total phenolic compound of 81.91 ± 0.51 mg GAE/g extract. In addition, the ethanolic extract demonstrated higher antioxidant activity than aqueous extract using DPPH, ABTS, and FRAP assays by 28.91 ± 3.26 mg GAE/g extract, 189.45 ± 11.58 mg 24 TEAC/g extract, and 3292.46 ± 259.64 g FeSO4/g extract, respectively. In the antiviral assay, it was found that the ethanolic extract of red jasmine rice could inhibit HSV-1 more effectively than HSV-2 when treated before, during, and after the viral attachment on Vero cells, with 50% effective doses of 227.53 ± 2.41, 189.59 ± 7.76, and 192.62 ± 2.40 µg/mL, respectively. The extract also demonstrated the highest reduction of HSV-1 particles at 4 h after treatment and the inhibition of HSV-1 replication. The ethanolic extract exhibited a higher toxicity level than the aqueous extract, as well as the potential to induce DNA fragmentation by intrinsic and extrinsic apoptosis pathways on the Caco-2 cells. These findings suggest that red jasmine rice extract demonstrates nutritional value and biological activity on HSV, free radicals, and cancer cell inhibition.


Asunto(s)
Herpesvirus Humano 1 , Jasminum , Neoplasias , Oryza , Animales , Antocianinas/farmacología , Antioxidantes/farmacología , Antivirales/farmacología , Células CACO-2 , Chlorocebus aethiops , Etanol/farmacología , Radicales Libres/farmacología , Herpesvirus Humano 2/fisiología , Humanos , Fenoles/farmacología , Extractos Vegetales/farmacología , Células Vero
5.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34959637

RESUMEN

Traditional Triphala (three fruits), consisting of Phyllanthus emblica, Terminalia chebula, and Terminalia bellirica, presents a broad range of biological activities. However, its ability to inhibit dengue virus (DENV) infection has not been reported yet. Herein, the authors investigated the efficiency of three different Triphala formulations and its individual extract constituents to inhibit DENV infection. Treatment with T. bellirica extract or Triphala formulated with a high ratio of T. bellirica extract showed remarkable efficiency in significantly lowering DENV infection in Vero cells. Their effects were further studied in Huh7 cells, to address its potential ability in human cells. Treatment with 100 µg/mL of T. bellirica extract or Triphala resulted in an approximate 3000-fold or 1000-fold lowering of virus production, respectively. Furthermore, the treatment diminished IL-6 and CXCL-10 expressions, which are the hallmark of the cytokine storm phenomenon in DENV infection. The HPLC profiling demonstrated gallic acid as a major compound, the treatment by which showed its ability to effectively inhibit DENV infection after virus entry. Molecular docking demonstrated that gallic acid was able to interact with DENV NS5 protein, which could be one of Triphala's antiviral mechanism. This study offers Triphala formulation and its ingredient, T. bellirica extract, as a natural based pharmaceutical to be used in DENV infection treatment.

6.
Molecules ; 26(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34641520

RESUMEN

Immunotherapy harnessing immune functions is a promising strategy for cancer treatment. Tumor sensitization is one approach to enhance tumor cell susceptibility to immune cell cytotoxicity that can be used in combination with immunotherapy to achieve therapeutic efficiency. Cordycepin, a bioactive compound that can be extracted from some Cordyceps spp. has been reported to effectively inhibit tumor growth, however, the mechanism of its tumor sensitization activity that enhances immune cell cytotoxicity is unknown. In the present study, we investigated the potency of cordycepin to sensitize a lethal cancer, cholangiocarcinoma (CCA), to natural killer (NK) cells. Treatment with cordycepin prior to and during co-culturing with NK-92 cells significantly increased cell death of KKU-213A as compared to solitary cordycepin or NK treatment. Moreover, sensitization activity was also observed in the combination of NK-92 cells and Cordyceps militaris extract that contained cordycepin as a major component. The cordycepin treatment remarkably caused an increase in TRAIL receptor (DR4 and DR5) expression in KKU-213A, suggesting the possible involvement of TRAIL signaling in KKU-213A sensitization to NK-92 cells. In conclusion, this is the first report on the sensitization activity of cordycepin on CCA cells to NK cytotoxicity, which supports that cordycepin can be further developed as an alternate immunomodulating agent.


Asunto(s)
Neoplasias de los Conductos Biliares/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Cordyceps/química , Desoxiadenosinas/farmacología , Células Asesinas Naturales/inmunología , Antineoplásicos Fitogénicos/farmacología , Neoplasias de los Conductos Biliares/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Células Asesinas Naturales/efectos de los fármacos , Extractos Vegetales/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptor fas/genética
7.
Molecules ; 26(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071102

RESUMEN

Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3'-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 µM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.


Asunto(s)
Virus del Dengue/efectos de los fármacos , Desoxiadenosinas/farmacología , Replicación Viral/efectos de los fármacos , Animales , Antivirales/farmacología , Chlorocebus aethiops , Dengue/tratamiento farmacológico , Virus del Dengue/metabolismo , Desoxiadenosinas/metabolismo , Simulación del Acoplamiento Molecular , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Células Vero/virología , Proteínas no Estructurales Virales/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-31871479

RESUMEN

Propolis is a natural substance and consists of bioactive compounds, which gives it antioxidant and antimicrobial properties. However, the use of propolis is limited by the low solubility in aqueous solutions. Thus, nanoparticles may be likely to accomplish enhanced delivery of poorly water-soluble phytomedicine. The aim of the present study was to fabricate and evaluate the biological activity of ethanolic extract of propolis-loaded poly(lactic-co-glycolic acid) nanoparticles (EEP-NPs). The EEP-NPs were prepared using the oil-in-water (o/w) single-emulsion solvent evaporation technique. The physicochemical properties of EEP-NPs were characterized and tested on their cytotoxicity, antifungal activity, and impact on key virulence factors that contribute to pathogenesis of C. albicans. EEP-NPs were successfully synthesized and demonstrated higher antifungal activity than EEP in free form. Moreover, EEP-NPs exhibited less cytotoxicity on Vero cells and suppressed the virulence factors of C. albicans, including adhesion, hyphal germination, biofilm formation, and invasion. Importantly, EEP-NPs exhibited a statistical decrease in the expression of hyphal adhesion-related genes, ALS3 and HWP1, of C. albicans. The results of this study revealed that EEP-NPs mediates a potent anticandidal activity and key virulence factors by reducing the gene-encoding virulence-associated hyphal- adhesion proteins of C. albicans and, thereby, disrupting the morphologic presence and attenuating their virulence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA