Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 49(11): 4934-41, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20459139

RESUMEN

Undecanuclear silver clusters [Ag(11)(mu(9)-Se)(mu(3)-Br)(3){Se(2)P(OR)(2)}(6)] (R = Et, (i)Pr, (2)Bu) were isolated from the reaction of [Ag(CH(3)CN)(4)](PF(6)), NH(4)[Se(2)P(OR)(2)], and Bu(4)NBr in a molar ratio of 4:3:1 in CH(2)Cl(2) at -20 degrees C. Clusters were characterized by elemental analysis, NMR spectroscopy ((1)H, (31)P, and (77)Se), positive FAB mass spectrometry, and X-ray crystallography of the isopropyl derivative. Structural elucidations revealed that the Ag(11)Se core geometry of clusters is a selenide-centered, slightly distorted 3,3,4,4,4-pentacapped trigonal prism surrounded by six diselenophosphato ligands, each in a tetrametallic tetraconnective (mu(2), mu(2)) coordination mode, and three mu(3)-bromide anions. All compounds exhibited orange luminescence both as a solid and in solution. The electronic structure of these clusters was studied by DFT calculations, and their optical properties were rationalized through a TDDFT investigation. The computed metrical parameters of the clusters were consistent with the corresponding X-ray data of [Ag(11)(mu(9)-Se)(mu(3)-Br)(3){Se(2)P(O(i)Pr)(2)}(6)] . The theoretical investigations affirmed that the low-energy absorptions as well as emissions were due to transitions from an orbital mostly of a selenophosphate ligand/central Se atom character to an orbital of metal character.


Asunto(s)
Simulación por Computador , Compuestos Organometálicos/química , Selenio/química , Plata/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Fotoquímica , Estereoisomerismo
2.
J Am Chem Soc ; 131(31): 11222-33, 2009 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-19594162

RESUMEN

Synthesis and structural characterization of an octanuclear Cu(I) cluster [Cu(8){Se(2)P(O(i)Pr)(2)}(6)](PF(6))(2) (1) with an empty Cu(8) cubic core involving diisopropyl diselenophosphate (dsep) ligand has been demonstrated despite its high tendency to abstract anions even from the traces of impurities in the solvent. Reaction of 1 with anion sources (Bu(4)NF for F(-); NaBH(4) for H(-), and NaSH for S(2-)) in a 1:1 ratio produced anion-centered Cu(8) clusters with a formula [Cu(8)(X){Se(2)P(O(i)Pr)(2)}(6)](PF(6)) (X = F, 2a; H, 3a; D, 3a') and [Cu(8)(S){Se(2)P(O(i)Pr)(2)}(6)] (4) in high yields. In addition, fluoride- and hydride-centered Cu(8)(I) clusters [Cu(8)(X){Se(2)P(OEt)(2)}(6)](PF(6)) (X = F, 2b; H, 3b) could be generated in approximately 80% yield by direct reaction of [Cu(CH(3)CN)(4)](PF(6)), NH(4)Se(2)P(OEt)(2), and the anion sources (Bu(4)NF for F(-); NaBH(4) for H(-)) in 8:6:1 ratio. Whereas the structural elucidation of complexes 2 and 4 revealed an anion-centered cubic Cu(8) core surrounded by six dsep ligands, it was a tetracapped tetrahedral copper framework with a hydride in the center in compounds 3. All Cu...Cu distances along either the edge of the cube in 2 and 4 or the tetracapped tetrahedron in 3 are shorter than those identified in 1. Although the cubic (or spherical) contraction of the copper framework that was identified in a series of closed-shell anion-centered (except a hydride) Cu(8) cube having T(h) symmetry could be explained by the existence of strong anion-cation attractions, it was definitely a surprise that the hydride, which is the smallest closed-shell anion and spherical too, induced a tetrahedral contraction of four out of the eight Cu atoms in the empty cube 1, resulting in a tetracapped-tetrahedral geometry and reducing the symmetry to T from T(h). Furthermore the fact that the encapsulated anion induced modulation of the copper core size and symmetry was fully reproduced by DFT calculations on model compounds. To the best of our knowledge, this demonstrated the first example of the reduction of molecular symmetry (from T(h) to T) simply by changing the encapsulated species without altering the general bonding pattern of the surrounding ligands. We also demonstrated that the hydride can easily replace other anions (Cl(-), Br(-), F(-), S(2-), Se(2-)) in a very facile manner to produce hydride-centered species. Eventually, compounds 3 were stable in the presence of other anions, and hydride/deuteride exchange could not be achieved.


Asunto(s)
Cobre/química , Selenio/química , Aniones , Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA