Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Hepatol ; 79(1): 25-42, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36822479

RESUMEN

BACKGROUND & AIMS: The consumption of sugar and a high-fat diet (HFD) promotes the development of obesity and metabolic dysfunction. Despite their well-known synergy, the mechanisms by which sugar worsens the outcomes associated with a HFD are largely elusive. METHODS: Six-week-old, male, C57Bl/6 J mice were fed either chow or a HFD and were provided with regular, fructose- or glucose-sweetened water. Moreover, cultured AML12 hepatocytes were engineered to overexpress ketohexokinase-C (KHK-C) using a lentivirus vector, while CRISPR-Cas9 was used to knockdown CPT1α. The cell culture experiments were complemented with in vivo studies using mice with hepatic overexpression of KHK-C and in mice with liver-specific CPT1α knockout. We used comprehensive metabolomics, electron microscopy, mitochondrial substrate phenotyping, proteomics and acetylome analysis to investigate underlying mechanisms. RESULTS: Fructose supplementation in mice fed normal chow and fructose or glucose supplementation in mice fed a HFD increase KHK-C, an enzyme that catalyzes the first step of fructolysis. Elevated KHK-C is associated with an increase in lipogenic proteins, such as ACLY, without affecting their mRNA expression. An increase in KHK-C also correlates with acetylation of CPT1α at K508, and lower CPT1α protein in vivo. In vitro, KHK-C overexpression lowers CPT1α and increases triglyceride accumulation. The effects of KHK-C are, in part, replicated by a knockdown of CPT1α. An increase in KHK-C correlates negatively with CPT1α protein levels in mice fed sugar and a HFD, but also in genetically obese db/db and lipodystrophic FIRKO mice. Mechanistically, overexpression of KHK-C in vitro increases global protein acetylation and decreases levels of the major cytoplasmic deacetylase, SIRT2. CONCLUSIONS: KHK-C-induced acetylation is a novel mechanism by which dietary fructose augments lipogenesis and decreases fatty acid oxidation to promote the development of metabolic complications. IMPACT AND IMPLICATIONS: Fructose is a highly lipogenic nutrient whose negative consequences have been largely attributed to increased de novo lipogenesis. Herein, we show that fructose upregulates ketohexokinase, which in turn modifies global protein acetylation, including acetylation of CPT1a, to decrease fatty acid oxidation. Our findings broaden the impact of dietary sugar beyond its lipogenic role and have implications on drug development aimed at reducing the harmful effects attributed to sugar metabolism.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Hígado , Masculino , Ratones , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/farmacología , Acetilación , Hígado/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Fructosa/metabolismo , Fructoquinasas/genética , Fructoquinasas/metabolismo
2.
Diabetes ; 70(8): 1857-1873, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031123

RESUMEN

The brain is now recognized as an insulin-sensitive tissue; however, the role of changing insulin concentrations in the peripheral circulation in gene expression in the brain is largely unknown. Here, we performed a hyperinsulinemic-euglycemic clamp on 3-month-old male C57BL/6 mice for 3 h. We show that, in comparison with results in saline-infused controls, increases in peripheral insulin within the physiological range regulate expression of a broad network of genes in the brain. Insulin regulates distinct pathways in the hypothalamus (HTM), hippocampus, and nucleus accumbens. Insulin shows its most robust effect in the HTM and regulates multiple genes involved in neurotransmission, including upregulating expression of multiple subunits of GABA-A receptors, Na+ and K+ channels, and SNARE proteins; differentially modulating glutamate receptors; and suppressing multiple neuropeptides. Insulin also strongly modulates metabolic genes in the HTM, suppressing genes in the glycolysis and pentose phosphate pathways, while increasing expression of genes regulating pyruvate dehydrogenase and long-chain fatty acyl-CoA and cholesterol biosynthesis, thereby rerouting of carbon substrates from glucose metabolism to lipid metabolism required for the biogenesis of membranes for neuronal and glial function and synaptic remodeling. Furthermore, based on the transcriptional signatures, these changes in gene expression involve neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells. Thus, peripheral insulin acutely and potently regulates expression of a broad network of genes involved in neurotransmission and brain metabolism. Dysregulation of these pathways could have dramatic effects in normal physiology and diabetes.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Hipotálamo/metabolismo , Insulina/farmacología , Lipogénesis/fisiología , Núcleo Accumbens/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Técnica de Clampeo de la Glucosa , Hipocampo/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/efectos de los fármacos
3.
Cell Metab ; 30(4): 735-753.e4, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577934

RESUMEN

Dietary sugars, fructose and glucose, promote hepatic de novo lipogenesis and modify the effects of a high-fat diet (HFD) on the development of insulin resistance. Here, we show that fructose and glucose supplementation of an HFD exert divergent effects on hepatic mitochondrial function and fatty acid oxidation. This is mediated via three different nodes of regulation, including differential effects on malonyl-CoA levels, effects on mitochondrial size/protein abundance, and acetylation of mitochondrial proteins. HFD- and HFD plus fructose-fed mice have decreased CTP1a activity, the rate-limiting enzyme of fatty acid oxidation, whereas knockdown of fructose metabolism increases CPT1a and its acylcarnitine products. Furthermore, fructose-supplemented HFD leads to increased acetylation of ACADL and CPT1a, which is associated with decreased fat metabolism. In summary, dietary fructose, but not glucose, supplementation of HFD impairs mitochondrial size, function, and protein acetylation, resulting in decreased fatty acid oxidation and development of metabolic dysregulation.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Azúcares de la Dieta/efectos adversos , Ácidos Grasos/metabolismo , Fructosa/efectos adversos , Hígado/metabolismo , Proteínas Mitocondriales , Obesidad/metabolismo , Animales , Línea Celular , Glucosa/efectos adversos , Lipogénesis , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Transcripción Genética
4.
Mol Metab ; 21: 68-81, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30670351

RESUMEN

OBJECTIVE: Insulin action in the brain controls metabolism and brain function, which is linked to proper mitochondrial function. Conversely, brain insulin resistance associates with mitochondrial stress and metabolic and neurodegenerative diseases. In the present study, we aimed to decipher the impact of hypothalamic insulin action on mitochondrial stress responses, function and metabolism. METHODS: To investigate the crosstalk of insulin action and mitochondrial stress responses (MSR), namely the mitochondrial unfolded protein response (UPRmt) and integrated stress response (ISR), qPCR, western blotting, and mitochondrial activity assays were performed. These methods were used to analyze the hypothalamic cell line CLU183 treated with insulin in the presence or absence of the insulin receptor as well as in mice fed a high fat diet (HFD) for three days and STZ-treated mice without or with insulin therapy. Intranasal insulin treatment was used to investigate the effect of acute brain insulin action on metabolism and mitochondrial stress responses. RESULTS: Acute HFD feeding reduces hypothalamic mitochondrial stress responsive gene expression of Atf4, Chop, Hsp60, Hsp10, ClpP, and Lonp1 in C57BL/6N mice. We show that insulin via ERK activation increases the expression of MSR genes in vitro as well as in the hypothalamus of streptozotocin-treated mice. This regulation propagates mitochondrial function by controlling mitochondrial proteostasis and prevents excessive autophagy under serum deprivation. Finally, short-term intranasal insulin treatment activates MSR gene expression in the hypothalamus of HFD-fed C57BL/6N mice and reduces food intake and body weight development. CONCLUSIONS: We define hypothalamic insulin action as a novel master regulator of MSR, ensuring proper mitochondrial function by controlling mitochondrial proteostasis and regulating metabolism.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hipotálamo/metabolismo , Insulina/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Aumento de Peso/fisiología , Administración Intranasal , Animales , Autofagia , Línea Celular , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/tratamiento farmacológico , Ingestión de Alimentos/efectos de los fármacos , Femenino , Expresión Génica , Técnicas de Inactivación de Genes , Hipotálamo/patología , Insulina/administración & dosificación , Insulina/uso terapéutico , Factor I del Crecimiento Similar a la Insulina/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteostasis , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Estreptozocina/farmacología
5.
Diabetes ; 68(3): 556-570, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30523026

RESUMEN

Insulin deficiency and uncontrolled diabetes lead to a catabolic state with decreased muscle strength, contributing to disease-related morbidity. FoxO transcription factors are suppressed by insulin and thus are key mediators of insulin action. To study their role in diabetic muscle wasting, we created mice with muscle-specific triple knockout of FoxO1/3/4 and induced diabetes in these M-FoxO-TKO mice with streptozotocin (STZ). Muscle mass and myofiber area were decreased 20-30% in STZ-Diabetes mice due to increased ubiquitin-proteasome degradation and autophagy alterations, characterized by increased LC3-containing vesicles, and elevated levels of phosphorylated ULK1 and LC3-II. Both the muscle loss and markers of increased degradation/autophagy were completely prevented in STZ FoxO-TKO mice. Transcriptomic analyses revealed FoxO-dependent increases in ubiquitin-mediated proteolysis pathways in STZ-Diabetes, including regulation of Fbxo32 (Atrogin1), Trim63 (MuRF1), Bnip3L, and Gabarapl. These same genes were increased 1.4- to 3.3-fold in muscle from humans with type 1 diabetes after short-term insulin deprivation. Thus, FoxO-regulated genes play a rate-limiting role in increased protein degradation and muscle atrophy in insulin-deficient diabetes.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Factores de Transcripción Forkhead/metabolismo , Atrofia Muscular/metabolismo , Aminoácidos/sangre , Animales , Autofagia/fisiología , Proteínas de Ciclo Celular , ADN Complementario/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/genética , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Factores de Transcripción Forkhead/genética , Humanos , Insulina/sangre , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/sangre , Atrofia Muscular/genética , Fosforilación , Proteolisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
J Clin Invest ; 127(11): 4059-4074, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972537

RESUMEN

Overconsumption of high-fat diet (HFD) and sugar-sweetened beverages are risk factors for developing obesity, insulin resistance, and fatty liver disease. Here we have dissected mechanisms underlying this association using mice fed either chow or HFD with or without fructose- or glucose-supplemented water. In chow-fed mice, there was no major physiological difference between fructose and glucose supplementation. On the other hand, mice on HFD supplemented with fructose developed more pronounced obesity, glucose intolerance, and hepatomegaly as compared to glucose-supplemented HFD mice, despite similar caloric intake. Fructose and glucose supplementation also had distinct effects on expression of the lipogenic transcription factors ChREBP and SREBP1c. While both sugars increased ChREBP-ß, fructose supplementation uniquely increased SREBP1c and downstream fatty acid synthesis genes, resulting in reduced liver insulin signaling. In contrast, glucose enhanced total ChREBP expression and triglyceride synthesis but was associated with improved hepatic insulin signaling. Metabolomic and RNA sequence analysis confirmed dichotomous effects of fructose and glucose supplementation on liver metabolism in spite of inducing similar hepatic lipid accumulation. Ketohexokinase, the first enzyme of fructose metabolism, was increased in fructose-fed mice and in obese humans with steatohepatitis. Knockdown of ketohexokinase in liver improved hepatic steatosis and glucose tolerance in fructose-supplemented mice. Thus, fructose is a component of dietary sugar that is distinctively associated with poor metabolic outcomes, whereas increased glucose intake may be protective.


Asunto(s)
Fructosa/farmacología , Glucosa/farmacología , Insulina/fisiología , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Adolescente , Animales , Dieta Alta en Grasa/efectos adversos , Inducción Enzimática , Ácidos Grasos/biosíntesis , Fructoquinasas/genética , Fructoquinasas/metabolismo , Intolerancia a la Glucosa , Humanos , Resistencia a la Insulina , Hígado/enzimología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/enzimología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Transcriptoma , Regulación hacia Arriba
8.
Cell ; 166(4): 867-880, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27518562

RESUMEN

We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Transducción de Señal , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Barrera Hematoencefálica , Retículo Endoplásmico/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Homeostasis , Ratones , Mitocondrias/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
9.
J Biol Chem ; 290(44): 26383-92, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26370080

RESUMEN

Diabetes mellitus is associated with a variety of complications, including alterations in the central nervous system (CNS). We have recently shown that diabetes results in a reduction of cholesterol synthesis in the brain due to decreased insulin stimulation of SREBP2-mediated cholesterol synthesis in neuronal and glial cells. In the present study, we explored the effects of the decrease in cholesterol on neuronal cell function using GT1-7 hypothalamic cells subjected to cholesterol depletion in vitro using three independent methods: 1) exposure to methyl-ß-cyclodextrin, 2) treatment with the HMG-CoA reductase inhibitor simvastatin, and 3) shRNA-mediated knockdown of SREBP2. All three methods produced 20-31% reductions in cellular cholesterol content, similar to the decrease in cholesterol synthesis observed in diabetes. All cholesterol-depleted neuron-derived cells, independent of the method of reduction, exhibited decreased phosphorylation/activation of IRS-1 and AKT following stimulation by insulin, insulin-like growth factor-1, or the neurotrophins (NGF and BDNF). ERK phosphorylation/activation was also decreased after methyl-ß-cyclodextrin and statin treatment but increased in cells following SREBP2 knockdown. In addition, apoptosis in the presence of amyloid-ß was increased. Reduction in cellular cholesterol also resulted in increased basal autophagy and impairment of induction of autophagy by glucose deprivation. Together, these data indicate that a reduction in neuron-derived cholesterol content, similar to that observed in diabetic brain, creates a state of insulin and growth factor resistance that could contribute to CNS-related complications of diabetes, including increased risk of neurodegenerative diseases, such as Alzheimer disease.


Asunto(s)
Colesterol/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Colesterol/genética , Hipotálamo/citología , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Neuronas/citología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 2 de Unión a Elementos Reguladores de Esteroles , beta-Ciclodextrinas/farmacología
10.
Cell ; 155(4): 909-921, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209627

RESUMEN

Ex vivo expansion of satellite cells and directed differentiation of pluripotent cells to mature skeletal muscle have proved difficult challenges for regenerative biology. Using a zebrafish embryo culture system with reporters of early and late skeletal muscle differentiation, we examined the influence of 2,400 chemicals on myogenesis and identified six that expanded muscle progenitors, including three GSK3ß inhibitors, two calpain inhibitors, and one adenylyl cyclase activator, forskolin. Forskolin also enhanced proliferation of mouse satellite cells in culture and maintained their ability to engraft muscle in vivo. A combination of bFGF, forskolin, and the GSK3ß inhibitor BIO induced skeletal muscle differentiation in human induced pluripotent stem cells (iPSCs) and produced engraftable myogenic progenitors that contributed to muscle repair in vivo. In summary, these studies reveal functionally conserved pathways regulating myogenesis across species and identify chemical compounds that expand mouse satellite cells and differentiate human iPSCs into engraftable muscle.


Asunto(s)
Evaluación Preclínica de Medicamentos , Desarrollo de Músculos/efectos de los fármacos , Animales , Colforsina/farmacología , Técnicas de Cultivo , AMP Cíclico/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Distrofias Musculares/terapia , Células Satélite del Músculo Esquelético/metabolismo , Trasplante de Células Madre , Pez Cebra/embriología , Pez Cebra/metabolismo
11.
J Clin Invest ; 123(11): 4667-80, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24084737

RESUMEN

Type 2 diabetes is characterized by insulin resistance and mitochondrial dysfunction in classical target tissues such as muscle, fat, and liver. Using a murine model of type 2 diabetes, we show that there is hypothalamic insulin resistance and mitochondrial dysfunction due to downregulation of the mitochondrial chaperone HSP60. HSP60 reduction in obese, diabetic mice was due to a lack of proper leptin signaling and was restored by leptin treatment. Knockdown of Hsp60 in a mouse hypothalamic cell line mimicked the mitochondrial dysfunction observed in diabetic mice and resulted in increased ROS production and insulin resistance, a phenotype that was reversed with antioxidant treatment. Mice with a heterozygous deletion of Hsp60 exhibited mitochondrial dysfunction and hypothalamic insulin resistance. Targeted acute downregulation of Hsp60 in the hypothalamus also induced insulin resistance, indicating that mitochondrial dysfunction can cause insulin resistance in the hypothalamus. Importantly, type 2 diabetic patients exhibited decreased expression of HSP60 in the brain, indicating that this mechanism is relevant to human disease. These data indicate that leptin plays an important role in mitochondrial function and insulin sensitivity in the hypothalamus by regulating HSP60. Moreover, leptin/insulin crosstalk in the hypothalamus impacts energy homeostasis in obesity and insulin-resistant states.


Asunto(s)
Chaperonina 60/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Línea Celular , Chaperonina 60/deficiencia , Chaperonina 60/genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Mitocondrias/metabolismo , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Obesidad/metabolismo , Estrés Oxidativo , Transducción de Señal
12.
PLoS One ; 6(6): e21187, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21731668

RESUMEN

Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor--leucine--can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD). Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance.


Asunto(s)
Dieta , Resistencia a la Insulina , Leucina/farmacología , Metabolómica , Adenilato Quinasa/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Adiposidad/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Suplementos Dietéticos , Hígado Graso/tratamiento farmacológico , Conducta Alimentaria/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Inflamación/patología , Insulina/metabolismo , Leucina/administración & dosificación , Leucina/uso terapéutico , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Ratones , Músculos/efectos de los fármacos , Músculos/enzimología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Cell Metab ; 12(6): 567-79, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21109190

RESUMEN

The brain is the most cholesterol-rich organ in the body, most of which comes from in situ synthesis. Here we demonstrate that in insulin-deficient diabetic mice, there is a reduction in expression of the major transcriptional regulator of cholesterol metabolism, SREBP-2, and its downstream genes in the hypothalamus and other areas of the brain, leading to a reduction in brain cholesterol synthesis and synaptosomal cholesterol content. These changes are due, at least in part, to direct effects of insulin to regulate these genes in neurons and glial cells and can be corrected by intracerebroventricular injections of insulin. Knockdown of SREBP-2 in cultured neurons causes a decrease in markers of synapse formation and reduction of SREBP-2 in the hypothalamus of mice using shRNA results in increased feeding and weight gain. Thus, insulin and diabetes can alter brain cholesterol metabolism, and this may play an important role in the neurologic and metabolic dysfunction observed in diabetes and other disease states.


Asunto(s)
Colesterol/biosíntesis , Diabetes Mellitus/metabolismo , Regulación de la Expresión Génica/fisiología , Hipotálamo/metabolismo , Insulina/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Análisis de Varianza , Animales , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/fisiología , Colesterol/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Insulina/farmacología , Lentivirus , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Neuroglía/metabolismo , Neuronas/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
14.
Nat Rev Drug Discov ; 9(6): 465-82, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20514071

RESUMEN

Obesity develops when energy intake exceeds energy expenditure. Although most current obesity therapies are focused on reducing calorific intake, recent data suggest that increasing cellular energy expenditure (bioenergetics) may be an attractive alternative approach. This is especially true for adaptive thermogenesis - the physiological process whereby energy is dissipated in mitochondria of brown fat and skeletal muscle in the form of heat in response to external stimuli. There have been significant recent advances in identifying the factors that control the development and function of these tissues, and in techniques to measure brown fat in human adults. In this article, we integrate these developments in relation to the classical understandings of cellular bioenergetics to explore the potential for developing novel anti-obesity therapies that target cellular energy expenditure.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Obesidad/tratamiento farmacológico , Adenosina Trifosfato/biosíntesis , Tejido Adiposo Pardo/metabolismo , Linaje de la Célula , Humanos , Canales Iónicos/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Obesidad/metabolismo , Termogénesis/efectos de los fármacos , Factor de Crecimiento Transformador beta/fisiología , Proteína Desacopladora 1
15.
Proc Natl Acad Sci U S A ; 106(21): 8665-70, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19433800

RESUMEN

Exercise promotes longevity and ameliorates type 2 diabetes mellitus and insulin resistance. However, exercise also increases mitochondrial formation of presumably harmful reactive oxygen species (ROS). Antioxidants are widely used as supplements but whether they affect the health-promoting effects of exercise is unknown. We evaluated the effects of a combination of vitamin C (1000 mg/day) and vitamin E (400 IU/day) on insulin sensitivity as measured by glucose infusion rates (GIR) during a hyperinsulinemic, euglycemic clamp in previously untrained (n = 19) and pretrained (n = 20) healthy young men. Before and after a 4 week intervention of physical exercise, GIR was determined, and muscle biopsies for gene expression analyses as well as plasma samples were obtained to compare changes over baseline and potential influences of vitamins on exercise effects. Exercise increased parameters of insulin sensitivity (GIR and plasma adiponectin) only in the absence of antioxidants in both previously untrained (P < 0.001) and pretrained (P < 0.001) individuals. This was paralleled by increased expression of ROS-sensitive transcriptional regulators of insulin sensitivity and ROS defense capacity, peroxisome-proliferator-activated receptor gamma (PPARgamma), and PPARgamma coactivators PGC1alpha and PGC1beta only in the absence of antioxidants (P < 0.001 for all). Molecular mediators of endogenous ROS defense (superoxide dismutases 1 and 2; glutathione peroxidase) were also induced by exercise, and this effect too was blocked by antioxidant supplementation. Consistent with the concept of mitohormesis, exercise-induced oxidative stress ameliorates insulin resistance and causes an adaptive response promoting endogenous antioxidant defense capacity. Supplementation with antioxidants may preclude these health-promoting effects of exercise in humans.


Asunto(s)
Antioxidantes/efectos adversos , Antioxidantes/farmacología , Ejercicio Físico/fisiología , Salud , Adulto , Ácido Ascórbico/efectos adversos , Ácido Ascórbico/farmacología , Biomarcadores/sangre , Humanos , Insulina/sangre , Insulina/fisiología , Resistencia a la Insulina/fisiología , Masculino , Estrés Oxidativo/efectos de los fármacos , Especificidad por Sustrato , Factores de Tiempo , Vitamina E/efectos adversos , Vitamina E/farmacología
16.
Cell Metab ; 5(6): 438-49, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17550779

RESUMEN

Insulin action in the central nervous system regulates energy homeostasis and glucose metabolism. To define the insulin-responsive neurons that mediate these effects, we generated mice with selective inactivation of the insulin receptor (IR) in either pro-opiomelanocortin (POMC)- or agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus. While neither POMC- nor AgRP-restricted IR knockout mice exhibited altered energy homeostasis, insulin failed to normally suppress hepatic glucose production during euglycemic-hyperinsulinemic clamps in AgRP-IR knockout (IR(DeltaAgRP)) mice. These mice also exhibited reduced insulin-stimulated hepatic interleukin-6 expression and increased hepatic expression of glucose-6-phosphatase. These results directly demonstrate that insulin action in POMC and AgRP cells is not required for steady-state regulation of food intake and body weight. However, insulin action specifically in AgRP-expressing neurons does play a critical role in controlling hepatic glucose production and may provide a target for the treatment of insulin resistance in type 2 diabetes.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Glucosa/metabolismo , Insulina/farmacología , Hígado/metabolismo , Neuronas/efectos de los fármacos , Animales , Western Blotting , Peso Corporal , Electrofisiología , Femenino , Prueba de Tolerancia a la Glucosa , Glucosa-6-Fosfatasa/metabolismo , Homeostasis , Hiperinsulinismo/metabolismo , Hipotálamo/metabolismo , Técnicas para Inmunoenzimas , Integrasas/metabolismo , Interleucina-6/metabolismo , Hígado/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proopiomelanocortina/metabolismo , Receptor de Insulina/genética
17.
Mol Cell Biol ; 24(12): 5434-46, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15169905

RESUMEN

Insulin resistance is a pathophysiological component of type 2 diabetes and obesity and also occurs in states of stress, infection, and inflammation associated with an upregulation of cytokines. Here we show that in both obesity and lipopolysaccharide (LPS)-induced endotoxemia there is an increase in suppressor of cytokine signaling (SOCS) proteins, SOCS-1 and SOCS-3, in liver, muscle, and, to a lesser extent, fat. In concordance with these increases by LPS, tyrosine phosphorylation of the insulin receptor (IR) is partially impaired and phosphorylation of the insulin receptor substrate (IRS) proteins is almost completely suppressed. Direct overexpression of SOCS-3 in liver by adenoviral-mediated gene transfer markedly decreases tyrosine phosphorylation of both IRS-1 and IRS-2, while SOCS-1 overexpression preferentially inhibits IRS-2 phosphorylation. Neither affects IR phosphorylation, although both SOCS-1 and SOCS-3 bind to the insulin receptor in vivo in an insulin-dependent fashion. Experiments with cultured cells expressing mutant insulin receptors reveal that SOCS-3 binds to Tyr960 of IR, a key residue for the recognition of IRS-1 and IRS-2, whereas SOCS-1 binds to the domain in the catalytic loop essential for IRS-2 recognition in vitro. Moreover, overexpression of either SOCS-1 or SOCS-3 attenuates insulin-induced glycogen synthesis in L6 myotubes and activation of glucose uptake in 3T3L1 adipocytes. By contrast, a reduction of SOCS-1 or SOCS-3 by antisense treatment partially restores tumor necrosis factor alpha-induced downregulation of tyrosine phosphorylation of IRS proteins in 3T3L1 adipocytes. These data indicate that SOCS-1 and SOCS-3 act as negative regulators in insulin signaling and serve as one of the missing links between insulin resistance and cytokine signaling.


Asunto(s)
Proteínas Portadoras/fisiología , Resistencia a la Insulina/fisiología , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Células Cultivadas , ADN Complementario/genética , Endotoxemia/genética , Endotoxemia/metabolismo , Femenino , Expresión Génica , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina/genética , Péptidos y Proteínas de Señalización Intracelular , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Represoras/genética , Proteína 1 Supresora de la Señalización de Citocinas , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas , Factores de Transcripción/genética , Tirosina/química , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA